Paano mo naiiba ang f (x) = (5e ^ x + tanx) (x ^ 2-2x) gamit ang tuntunin ng produkto?

Paano mo naiiba ang f (x) = (5e ^ x + tanx) (x ^ 2-2x) gamit ang tuntunin ng produkto?
Anonim

Sagot:

#f '(x) = (5e ^ x + sec ^ 2x) (x ^ 2-2x) + (5e ^ x + tanx) (2x-2) #

Paliwanag:

Para sa #f (x) = (5e ^ x + tanx) (x ^ 2-2x) #, nakita namin #f '(x) # sa paggawa:

#f '(x) = d / dx 5e ^ x + tanx (x ^ 2-2x) + (5e ^ x + tanx) d / dx x ^ 2-2x

#f '(x) = (5e ^ x + sec ^ 2x) (x ^ 2-2x) + (5e ^ x + tanx) (2x-2) #