Paano mo nahanap ang z, z ^ 2, z ^ 3, z ^ 4 na ibinigay z = 1/2 (1 + sqrt3i)?

Paano mo nahanap ang z, z ^ 2, z ^ 3, z ^ 4 na ibinigay z = 1/2 (1 + sqrt3i)?
Anonim

Sagot:

#z = cos (pi / 3) + isinamoy (pi / 3) #

# z ^ 2 = cos (2pi / 3) + isinisi (2pi / 3) = 1/2 (-1 + sqrt (3) i) #

# z ^ 3 = cos (3pi / 3) + isinama (3pi / 3) = -1 #

# z ^ 4 = cos (4pi / 3) + isinisi (4pi / 3) = -1/2 (1 + sqrt (3) i) #

Paliwanag:

Ang pinakamadaling paraan ay ang paggamit ng teorama ni De Moivre. Para sa kumplikadong numero # z #

# z = r (costheta + isintheta) #

# z ^ n = r ^ n (cosntheta + isinntheta) #

Kaya gusto naming i-convert ang aming kumplikadong numero sa polar form. Ang modulus # r # ng isang kumplikadong numero # a + bi # ay binigay ni

#r = sqrt (a ^ 2 + b ^ 2) #

#r = sqrt ((1/2) ^ 2 + (sqrt (3) / 2) ^ 2) = sqrt (1/4 + 3/4) = 1 #

Ang kumplikadong numero ay nasa unang kuwadrante ng Argand diagram upang ang argument ay ibinigay sa pamamagitan ng:

#theta = tan ^ (- 1) (b / a) #

#theta = tan ^ (- 1) ((sqrt (3) / 2) / (1/2)) = tan ^ (- 1) (sqrt (3)

#z = cos (pi / 3) + isinamoy (pi / 3) #

# z ^ 2 = cos (2pi / 3) + isinisi (2pi / 3) = 1/2 (-1 + sqrt (3) i) #

# z ^ 3 = cos (3pi / 3) + isinama (3pi / 3) = -1 #

# z ^ 4 = cos (4pi / 3) + isinisi (4pi / 3) = -1/2 (1 + sqrt (3) i) #