Sagot:
Magtayo ng equation kung saan n = ang unang numero at n +1 ang pangalawang at n + 2 ang pangatlo at ang n + 3 ay ang ikaapat.
Paliwanag:
Pagsamahin ang mga tuntunin
Ang kabuuan ng mga numero ng isang dalawang-digit na numero ay 10. Kung ang mga digit ay nababaligtad, isang bagong numero ay nabuo. Ang bagong numero ay isa na mas mababa sa dalawang beses ang orihinal na numero. Paano mo mahanap ang orihinal na numero?
Ang orihinal na numero ay 37 Hayaan m at n ang una at pangalawang digit ayon sa orihinal na numero. Sinabihan kami na: m + n = 10 -> n = 10-m [A] Ngayon. upang bumuo ng bagong numero dapat naming baligtarin ang mga digit. Dahil maaari naming ipalagay ang parehong mga numero upang maging decimal, ang halaga ng orihinal na numero ay 10xxm + n [B] at ang bagong numero ay: 10xxn + m [C] Sinasabi rin sa amin na ang bagong numero ay dalawang beses sa orihinal na numero na minus 1 Pinagsama [B] at [C] -> 10n + m = 2 (10m + n) -1 [D] Pinalitan ang [A] sa [D] -> 10 (10-m) + m = 20m +2 -m) -1 100-10m + m = 20m + 20-2m-1 100
Ang kabuuan ng tatlong numero ay 137. Ang ikalawang numero ay apat na higit pa, dalawang beses ang unang numero. Ang ikatlong numero ay limang mas mababa sa, tatlong beses ang unang numero. Paano mo mahanap ang tatlong numero?
Ang mga numero ay 23, 50 at 64. Magsimula sa pamamagitan ng pagsulat ng isang expression para sa bawat isa sa tatlong numero. Lahat sila ay nabuo mula sa unang numero, kaya tawagin ang unang numero x. Hayaang ang unang numero ay x Ang pangalawang numero ay 2x +4 Ang pangatlong numero ay 3x -5 Sinabihan kami na ang kanilang kabuuan ay 137. Ang ibig sabihin nito kapag idagdag natin ang lahat ng ito ang sagot ay 137. Sumulat ng isang equation. (x) + (2x + 4) + (3x - 5) = 137 Hindi kinakailangan ang mga braket, kasama ang mga ito para sa kalinawan. 6x -1 = 137 6x = 138 x = 23 Sa sandaling malaman natin ang unang numero, maaari
"May 2 magkakasunod na integer ang Lena.Napansin niya na ang kanilang kabuuan ay katumbas ng pagkakaiba sa pagitan ng kanilang mga parisukat. Pinipili ni Lena ang isa pang 2 magkakasunod na integer at napapansin ang parehong bagay. Patunayan algebraically na ito ay totoo para sa anumang 2 magkakasunod na integers?
Maaring sumangguni sa Paliwanag. Alalahanin na ang magkakasunod na integer ay magkakaiba ng 1. Kaya, kung m ay isang integer, pagkatapos, ang succeeding integer ay dapat na n +1. Ang kabuuan ng dalawang integer na ito ay n + (n +1) = 2n + 1. Ang pagkakaiba sa pagitan ng kanilang mga parisukat ay (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, ayon sa ninanais! Pakiramdam ang Joy of Maths!