Sagot:
Ang equation ng parabola ay
Paliwanag:
Ang Vertex ng parabola ay nasa katumpakan mula sa pokus
Ano ang pamantayang anyo ng equation ng parabola na nakatutok sa (-13,7) at isang directrix ng y = 6?
(x + 13) ^ 2 = 2 (y-13/2) Ang isang parabola ay isang curve (ang lokus ng isang punto) tulad na ang distansya mula sa isang nakapirming punto (focus) ay katumbas ng distansya nito mula sa isang nakapirming linya (directrix ). Kaya kung ang (x, y) ay anumang punto sa parabola, pagkatapos ay ang distansya mula sa focus (-13,7) ay magiging sqrt ((x + 13) ^ 2 + (y-7) ^ 2) Ang distansya mula sa (x-13) ^ 2 + (y-7) ^ 2) = y-6 Ang magkabilang panig ay magkakaroon ng (x + 13) ^ 2 + y ^ 2-14y + 49 = y ^ 2 -12y +36 (x + 13) ^ 2 = 2y-13 (x + 13) ^ 2 = 2 (y-13/2)
Ano ang pamantayang anyo ng equation ng parabola na may isang focus sa (1, -2) at isang directrix ng y = 9?
Y = -1 / 22x ^ 2 + 1 / 11x + 38/11> "para sa anumang punto" (x, y) "sa parabola" "ang distansya mula sa" (x, y) "sa focus at directrix" " ay pantay-pantay "" gamit ang "kulay (asul)" na distansya ng formula "sqrt ((x-1) ^ 2 + (y + 2) ^ 2) = | y-9 | (y-9) ^ 2 x ^ 2-2x + 1cancel (+ y ^ 2) + 4y + 4 = kanselahin (y ^ 2) -18y + 81 rArr-22y + 77 = x ^ 2-2x + 1 rArr-22y = x ^ 2-2x-76 rArry = -1 / 22x ^ 2 + 1 / 11x + 38 / 11larrolor (pula) "sa karaniwang form"
Ano ang pamantayang anyo ng equation ng parabola na may isang focus sa (1,7) at isang directrix ng y = -4?
Y = x ^ 2/22-x / 11 + 17/11 na pamantayan mula sa (x-1) ^ 2 = 22 (y-3/2) Vertex form mula sa ibinigay na Focus (1,7) at directrix y = -4 (7 + (- 4)) / 2 = 3/2 vertex (h, k) = (1, 3/2) gamitin ang pormularyo ng vertex (xh) ^ 2 = 4p (yk) (x-1) ^ 2 = 4 * 11/2 (y-3/2) (x ^ 2-2x + 1 = 22 (y-3/2) x ^ 2-2x + 1 = 22y-33 x ^ 2-2x + 34 = 22y (x ^ 2-2x + 34) / 22 = (22y) / 22 (x ^ 2-2x + 34) / 22 = (cancel22y) / cancel22 y = x ^ 2/22-x / 11 + 17/11 standard mula sa graph {(yx ^ 2/22 + x / 11-17 / 11) (y +4) = 0 [-20, 20, -10,10]}