Sagot:
Walang solusyon.
Paliwanag:
Bago kami magsimula maaari naming hulaan magkakaroon ng problema.
Ang magkakasunod na integer ay palaging isang kakaiba at isang kahit na.
Ang kabuuan ay palaging isang kakaibang numero, at ang pagdaragdag ng 6 ay hindi gumagawa ng pagkakaiba.
Ang mga matematika ay dapat kumpirmahin ito..
Magsimula sa pamamagitan ng pagtukoy sa magkakasunod na mga integer.
Hayaang ang unang integer ay
Ang 2nd integer ay
Ang kabuuan ng mga integer na ito at 6 ay magiging 126.
Hindi ito isang integer. Kinukumpirma ng resulta ang naisip namin.
Ang produkto ng dalawang magkakasunod na kakaibang integers ay 29 na mas mababa sa 8 beses ang kanilang kabuuan. Hanapin ang dalawang integer. Sagot sa anyo ng mga nakapares na puntos na may pinakamababang ng dalawang integer muna?
(X, 2) = 8 (x + x + 2) - x :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 o 1 Ngayon, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Ang mga numero ay (13, 15). KASO II: x = 1:. x + 2 = 1+ 2 = 3:. Ang mga numero ay (1, 3). Kaya, dahil may dalawang kaso na nabuo dito; ang pares ng mga numero ay maaaring pareho (13, 15) o (1, 3).
Alam ang formula sa kabuuan ng integers ng N a) kung ano ang kabuuan ng unang N na magkakasunod na integer square, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Sum ng unang N na magkakasunod na kubo integers Sigma_ (k = 1) ^ N k ^ 3?
Para sa S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (N) = ((n + 1) ^ 4 (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mayroon kaming sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1 (n + 1) ^ 3 0 = 3sum_ {i = 0} sum_ {i = 0} ^ n 1 (n + 1) ^ 3 solving for sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} (n + 1) / 3-sum_ {i = 0} ^ ni ngunit sum_ {i = 0} ^ ni = ((n + 1) n) / 2 kaya sum_ {i = 0} ^ ni ^ 2 = (n 1) ^ 3/3 (n +1) / 3 - ((n + 1) n) / 2 sum_ {i = 0} ^ ni ^ 2 = 1/6 n (1 + n) n) Gamit an
"May 2 magkakasunod na integer ang Lena.Napansin niya na ang kanilang kabuuan ay katumbas ng pagkakaiba sa pagitan ng kanilang mga parisukat. Pinipili ni Lena ang isa pang 2 magkakasunod na integer at napapansin ang parehong bagay. Patunayan algebraically na ito ay totoo para sa anumang 2 magkakasunod na integers?
Maaring sumangguni sa Paliwanag. Alalahanin na ang magkakasunod na integer ay magkakaiba ng 1. Kaya, kung m ay isang integer, pagkatapos, ang succeeding integer ay dapat na n +1. Ang kabuuan ng dalawang integer na ito ay n + (n +1) = 2n + 1. Ang pagkakaiba sa pagitan ng kanilang mga parisukat ay (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, ayon sa ninanais! Pakiramdam ang Joy of Maths!