Sagot:
Ipinapakita sa ibaba …
Paliwanag:
Gamitin ang aming mga pagkakakilanlan sa trig …
Factor sa kaliwang bahagi ng iyong problema …
Given,
Pinatunayan
Ang isang maliit na butil ay itinapon sa isang tatsulok mula sa isang dulo ng isang pahalang na base at ang greysing ang vertex ay bumaba sa kabilang dulo ng base. Kung alpha at beta ang base ang mga anggulo at angta ang anggulo ng projection, Patunayan na ang tan angta = tan alpha + tan beta?
Given na ang isang maliit na butil ay itinapon sa anggulo ng projection theta sa isang tatsulok DeltaACB mula sa isa sa mga dulo nito ng pahalang base AB nakahanay sa kahabaan ng X-aksis at ito sa wakas ay bumaba sa kabilang dulo Bof ang base, greysing ang vertex C (x, y) Hayaan mo ang bilis ng projection, T ay ang oras ng flight, R = AB ay ang pahalang na hanay at t ay ang oras na kinuha ng maliit na butil upang maabot sa C (x, y) Ang pahalang na bahagi ng bilis ng projection - > ucostheta Ang vertical na bahagi ng bilis ng projection -> usintheta Isinasaalang-alang ang paggalaw sa ilalim ng gravity nang walang anum
Patunayan / i-verify ang mga pagkakakilanlan: (cos (-t)) / (sec (-t) + tan (-t)) = 1 + sint?
Tingnan sa ibaba. Alalahanin na ang cos (-t) = gastos, seg (-t) = sektang, tulad ng cosine at secant ay kahit na mga function. tan (-t) = - tant, bilang tangent ay isang kakaibang function. Kaya, mayroon kaming gastos / (sektang tant) = 1 + sint Mag-ingat na tant = sint / gastos, sekta = 1 / cost cost / (1 / cost-sint / gastos) = 1 + sint Ibawas sa denominator. (1-sint) / gastos) = 1 + sint cost * cost / (1-sint) = 1 + sint cos ^ 2t / (1-sint) = 1 + 2t = 1. Ang pagkakakilanlan din ay nagsasabi sa amin na cos ^ 2t = 1-sin ^ 2t. Ilapat ang pagkakakilanlan. (1-sin ^ 2t) / (1-sint) = 1 + sint Paggamit ng Pagkakaiba ng mga pari
Paano mo patunayan (1 - kasalanan x) / (1 + kasalanan x) = (seg x + tan x) ^ 2?
Gumamit ng ilang mga pagkakakilanlan ng trig at pasimplehin. Tingnan sa ibaba. Naniniwala ako na may isang pagkakamali sa tanong, ngunit hindi mahalaga. Upang maunawaan ito, dapat basahin ang tanong: (1-sinx) / (1 + sinx) = (secx-tanx) ^ 2 Sa alinmang paraan, nagsisimula tayo sa pananalitang ito: (1-sinx) / (1+ sinx) (Kapag nagpapatunay ng mga pagkakakilanlang trigmata, karaniwang mas mahusay na magtrabaho sa gilid na may bahagi).Gumamit tayo ng isang mahusay na lansihin na tinatawag na conjugate multiplikasyon, kung saan namin multiply ang fraction sa pamamagitan ng conjugate ng denominator: (1-sinx) / (1 + sinx) * (1-sin