Sagot:
Paliwanag:
Nakikita ko na ito ay pinaka kapaki-pakinabang upang malutas ang domain kung saan umiiral ang function.
Sa kasong ito
Sa domain na ito, ang pinakamaliit na halaga na maaaring tumagal ng pag-andar ay zero at ang pinakamalaking halaga na maaari itong gawin ay
Kaya, ang saklaw ng function ay
Hope this helps:)
Ang domain ng f (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa 7, at ang domain ng g (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa -3. Ano ang domain ng (g * f) (x)?
Lahat ng mga tunay na numero maliban sa 7 at -3 kapag multiply mo ang dalawang mga function, ano ang ginagawa namin? kinukuha namin ang halaga ng f (x) at i-multiply ito sa pamamagitan ng g (x) na halaga, kung saan ang x ay dapat na pareho. Gayunpaman ang parehong mga pag-andar ay may mga paghihigpit, 7 at -3, kaya ang produkto ng dalawang pag-andar, ay dapat may * parehong * mga paghihigpit. Kadalasan kapag may mga operasyon sa mga pag-andar, kung ang mga naunang pag-andar (f (x) at g (x) ay may mga paghihigpit, palaging kinukuha ito bilang bahagi ng bagong paghihigpit ng bagong function, o ang kanilang operasyon. Maaari
Ang graph ng y = g (x) ay ibinigay sa ibaba. Sketch isang tumpak na graph ng y = 2 / 3g (x) +1 sa parehong hanay ng mga axes. Lagyan ng label ang mga axes at hindi bababa sa 4 na puntos sa iyong bagong graph. Ibigay ang domain at hanay ng orihinal at ang transformed function?
Pakitingnan ang paliwanag sa ibaba. Bago: y = g (x) "domain" ay x sa [-3,5] "range" ay y sa [0,4.5] Pagkatapos: y = 2 / 3g (x) +1 "domain" (3) = 0 : y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Ang newpoint ay (-3,1) (2) Bago: x = 0, =>, y = g (x) = g (0) = 4.5 Pagkatapos: y = 2 / 3g (x) + 1 = 2/3 * 4.5 + 1 = 4 Ang newpoint ay (0,4) (3) Bago: x = 3, => (x) = g (3) = 0 Pagkatapos: y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Ang newpoint ay (3,1) (4) Bago: x = 5, = (x) = g (5) = 1 Pagkatapos: y = 2 / 3g (x) + 1 = 2/3 * 1 + 1 = 5/3 Ang newpoint ay (5,5 / 3) maaaring ilagay ang mga 4 na puntong iyon sa gra
Kung ang function f (x) ay may domain na -2 <= x <= 8 at isang hanay ng -4 <= y <= 6 at ang function na g (x) ay tinukoy ng formula g (x) = 5f ( 2x)) kung gayon ano ang domain at hanay ng g?
Nasa ibaba. Gamitin ang basic transformations function upang mahanap ang bagong domain at range. Ang 5f (x) ay nangangahulugan na ang pag-andar ay patayo sa pamamagitan ng isang factor ng limang. Samakatuwid, ang bagong hanay ay sumasaklaw ng agwat na limang beses na mas malaki kaysa sa orihinal. Sa kaso ng f (2x), isang horizontal stretch sa pamamagitan ng isang factor ng isang kalahati ay inilalapat sa function. Samakatuwid ang mga paa't kamay ng domain ay halved. Et voilà!