Sagot:
Paliwanag:
Gamitin ang parehong formula at palitan ang paksa
Karaniwan ang proseso ay tulad ng sumusunod: Magsimula sa pamamagitan ng pag-alam sa haba ng panig.
Gawin ang eksaktong kabaligtaran: basahin mula sa kanan papuntang kaliwa
Sa matematika:
Ang pinagsamang lugar ng dalawang parisukat ay 20 square centimeters. Ang bawat panig ng isang parisukat ay dalawang beses hangga't isang gilid ng iba pang parisukat. Paano mo mahanap ang haba ng mga gilid ng bawat parisukat?
Ang mga parisukat ay may gilid ng 2 cm at 4 na cm. Tukuyin ang mga variable na kumakatawan sa mga gilid ng mga parisukat. Hayaan ang gilid ng mas maliit na parisukat ay x cm Ang gilid ng mas malaking parisukat ay 2x cm Hanapin ang kanilang mga lugar sa mga tuntunin ng x Mas maliit na parisukat: Area = x xx x = x ^ 2 Mas malaki parisukat: Area = 2x xx 2x = 4x ^ 2 Ang kabuuan ng mga lugar ay 20 cm ^ 2 x ^ 2 + 4x ^ 2 = 20 5x ^ 2 = 20 x ^ 2 = 4 x = sqrt4 x = 2 Ang mas maliit na parisukat ay may panig ng 2 cm Ang mas malaking parisukat ay may panig ng 4cm Ang mga lugar ay: 4cm ^ 2 + 16cm ^ 2 = 20cm ^ 2
Ang haba ng bawat panig ng parisukat A ay nadagdagan ng 100 porsiyento upang gumawa ng square B. Pagkatapos ang bawat panig ng parisukat ay nadagdagan ng 50 porsiyento upang gawing parisukat C. Sa pamamagitan ng anong porsyento ang lugar ng parisukat C na mas malaki kaysa sa kabuuan ng mga lugar ng parisukat A at B?
Ang lugar ng C ay 80% na mas malaki kaysa sa lugar ng A + na lugar ng B Tukuyin bilang isang yunit ng pagsukat sa haba ng isang bahagi ng A. Ang lugar ng A = 1 ^ 2 = 1 sq.unit Ang haba ng panig ng B ay 100% higit pa kaysa haba ng panig ng isang rarr Haba ng panig ng B = 2 yunit ng Area ng B = 2 ^ 2 = 4 sq.units. Ang haba ng panig ng C ay 50% higit pa kaysa sa haba ng gilid ng B rarr Haba ng panig ng C = 3 yunit ng Area ng C = 3 ^ 2 = 9 sq.units Ang lugar ng C ay 9- (1 + 4) = 4 sq.units mas malaki kaysa sa pinagsamang mga lugar ng A at B. 4 sq.units kumakatawan sa 4 / (1 + 4) = 4/5 ng pinagsamang lugar ng A at B. 4/5 = 80%
Hayaan ang S ay isang parisukat ng yunit ng lugar. Isaalang-alang ang anumang may apat na gilid na may isang tuktok sa bawat panig ng S. Kung ang isang, b, c at d ay nagpapahiwatig ng haba ng gilid ng may apat na gilid, patunayan na ang 2 <= a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 <= 4?
Hayaan ang ABCD ay isang parisukat na yunit ng lugar. Kaya AB = BC = CD = DA = 1 unit. Hayaan ang PQRS maging isang may apat na gilid na may isang tugatog sa bawat panig ng parisukat. Narito hayaan PQ = b, QR = c, RS = dandSP = isang Paglalapat Pythagoras thorem maaari naming magsulat ng isang ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = x ^ 2 + y ^ 2 + (1-x) ^ 2 + (1-w) ^ 2 + w ^ 2 + (1-z) ^ 2 + z ^ 2 + (1-y) ^ 2 = 4 + 2 (x ^ 2 + y ^ 2 + z ^ + w ^ 2-xyzw) = 2 + 2 (1 + x ^ 2 + y ^ 2 + z ^ 2 + w ^ 2-xyzw) = 2 + 2 ((x-1/2) ^ 2 + 2) (ngayon) ng problema na mayroon kami 0 <= x <= 1 => 0 <= (x-1 / 2) ^ 2 <= 1/4 0 <= y <=