Sagot:
Paliwanag:
kaya nga
Ang tatlong magkakasunod na integer ay maaaring kinakatawan ng n, n + 1, at n + 2. Kung ang kabuuan ng tatlong magkakasunod na integer ay 57, ano ang integer?
18,19,20 Sum ay ang pagdaragdag ng numero upang ang kabuuan ng n, n + 1 at n + 2 ay maaaring kinakatawan bilang, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 kaya ang aming unang integer ay 18 (n) ang aming pangalawang ay 19, (18 + 1) at ang aming pangatlo ay 20, (18 + 2).
Alam ang formula sa kabuuan ng integers ng N a) kung ano ang kabuuan ng unang N na magkakasunod na integer square, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Sum ng unang N na magkakasunod na kubo integers Sigma_ (k = 1) ^ N k ^ 3?
Para sa S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (N) = ((n + 1) ^ 4 (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mayroon kaming sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1 (n + 1) ^ 3 0 = 3sum_ {i = 0} sum_ {i = 0} ^ n 1 (n + 1) ^ 3 solving for sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} (n + 1) / 3-sum_ {i = 0} ^ ni ngunit sum_ {i = 0} ^ ni = ((n + 1) n) / 2 kaya sum_ {i = 0} ^ ni ^ 2 = (n 1) ^ 3/3 (n +1) / 3 - ((n + 1) n) / 2 sum_ {i = 0} ^ ni ^ 2 = 1/6 n (1 + n) n) Gamit an
"May 2 magkakasunod na integer ang Lena.Napansin niya na ang kanilang kabuuan ay katumbas ng pagkakaiba sa pagitan ng kanilang mga parisukat. Pinipili ni Lena ang isa pang 2 magkakasunod na integer at napapansin ang parehong bagay. Patunayan algebraically na ito ay totoo para sa anumang 2 magkakasunod na integers?
Maaring sumangguni sa Paliwanag. Alalahanin na ang magkakasunod na integer ay magkakaiba ng 1. Kaya, kung m ay isang integer, pagkatapos, ang succeeding integer ay dapat na n +1. Ang kabuuan ng dalawang integer na ito ay n + (n +1) = 2n + 1. Ang pagkakaiba sa pagitan ng kanilang mga parisukat ay (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, ayon sa ninanais! Pakiramdam ang Joy of Maths!