Ano ang square root ng 2i?

Ano ang square root ng 2i?
Anonim

#sqrt {2i} = {1 + i, -1-i} #

Tingnan natin ang ilang mga detalye.

Hayaan # z = sqrt {2i} #.

(Tandaan na # z # ay kumplikadong numero.)

sa pamamagitan ng squaring, #Rightarrow z ^ 2 = 2i #

sa pamamagitan ng paggamit ng exponential form # z = re ^ {i theta} #, #Rightarrow r ^ 2e ^ {i (2theta)} = 2i = 2e ^ {i (pi / 2 + 2npi)} #

#Rightarrow {(r ^ 2 = 2 Rightarrow r = sqrt {2}), (2theta = pi / 2 + 2npi Rightarrow theta = pi / 4 + npi):} #

Kaya, # z = sqrt {2} e ^ {i (pi / 4 + npi)} #

sa pamamagitan ng Formula ng Eular: # e ^ {i theta} = cos theta + isin theta #

#Rightarrow z = sqrt {2} cos (pi / 4 + npi) + isinamoy (pi / 4 + npi) #

# = sqrt {2} (pm1 / sqrt {2} pm1 / sqrt {2} i) = pm1pmi #

Iningatan ko ang sumusunod na orihinal na post kung sakaling kailangan ng isang tao.

# (2i) ^ (1/2) # = #(2)^(1/2)# # (i) ^ (1/2) #,

# (i) ^ (1/2) # = -1

# (2i) ^ (1/2) # = #(2)^(1/2)# x -1

#(2)^(1/2)# = 1.41

# (2i) ^ (1/2) # = 1.41 x -1 = -1.41