Sagot:
Ang domain ay ang lahat ng tunay na numero maliban sa 0 at 1. Ang mga zeroes ay sa x = 2 at x = -1.
Paliwanag:
Ang domain ng f (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa 7, at ang domain ng g (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa -3. Ano ang domain ng (g * f) (x)?
Lahat ng mga tunay na numero maliban sa 7 at -3 kapag multiply mo ang dalawang mga function, ano ang ginagawa namin? kinukuha namin ang halaga ng f (x) at i-multiply ito sa pamamagitan ng g (x) na halaga, kung saan ang x ay dapat na pareho. Gayunpaman ang parehong mga pag-andar ay may mga paghihigpit, 7 at -3, kaya ang produkto ng dalawang pag-andar, ay dapat may * parehong * mga paghihigpit. Kadalasan kapag may mga operasyon sa mga pag-andar, kung ang mga naunang pag-andar (f (x) at g (x) ay may mga paghihigpit, palaging kinukuha ito bilang bahagi ng bagong paghihigpit ng bagong function, o ang kanilang operasyon. Maaari
Kumuha ng isang parisukat na polinomyal sa mga sumusunod na kundisyon? 1. ang kabuuan ng zeroes = 1/3, ang produkto ng zeroes = 1/2
6x ^ 2-2x + 3 = 0 Ang parisukat na formula ay x = (- b + -sqrt (b ^ 2-4ac)) / (2a) Kabuuan ng dalawang ugat: (-b + sqrt (b ^ 2-4ac) / (2a) + (- b-sqrt (b ^ 2-4ac)) / (2a) = - (2b) / (2a) = - b / a -b / a = 1/3 b = -a / 3 Produkto ng dalawang pinagmulan: (-b + sqrt (b ^ 2-4ac)) / (2a) (- b-sqrt (b ^ 2-4ac)) / (2a) = ((b + sqrt (b ^ (4a ^ 2) = (b ^ 2-b ^ 2 + 4ac) / (4a ^ 2) = c / ac / a = 1 / 2 c = a / 2 Mayroon kaming ax ^ 2 + bx + c = 0 6x ^ 2-2x + 3 = 0 Katunayan: 6x ^ 2-2x + 3 = 0 x = (2-sqrt ((- 2) ^ (2 + -sqrt (4-72)) / 12 = (2 + -2sqrt (17) i) / 12 = (1 + -sqrt (2 * 17) i) / 6 (1 + sqrt (17) i) / 6 + (1-sqrt (17) i) /
Kung f (x) = 3x ^ 2 at g (x) = (x-9) / (x + 1), at x! = - 1, kung ano ang magiging katumbas ng f (g (x))? g (f (x))? f ^ -1 (x)? Ano ang magiging domain, range at zeroes para sa f (x)? Ano ang magiging domain, range at zeroes para sa g (x)?
F (x)) = 3 (x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + (X) = root () (x / 3) D_f = {x sa RR}, R_f = {f (x) sa RR; f (x) 1}, R_g = {g (x) sa RR; g (x)! = 1}