Sagot:
Paliwanag:
# "ipagpalagay na ibig mong sabihin" f (x) = 1 / (3x-2) # Ang denamineytor ng f (x) ay hindi maaaring maging zero dahil ito ay gumawa ng f (x) hindi natukoy. Ang equating ng denominator sa zero at paglutas ay nagbibigay ng halaga na hindi maaaring x.
# "lutasin" 3x-2 = 0rArrx = 2 / 3larrcolor (pula) "ibinukod na halaga" #
# "domain ay" x inRR, x! = 2/3 #
# (- oo, 2/3) uu (2/3, oo) larrcolor (asul) "sa interval notasyon" # graph {1 / (3x-2) -10, 10, -5, 5}
Ang domain ng f (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa 7, at ang domain ng g (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa -3. Ano ang domain ng (g * f) (x)?
Lahat ng mga tunay na numero maliban sa 7 at -3 kapag multiply mo ang dalawang mga function, ano ang ginagawa namin? kinukuha namin ang halaga ng f (x) at i-multiply ito sa pamamagitan ng g (x) na halaga, kung saan ang x ay dapat na pareho. Gayunpaman ang parehong mga pag-andar ay may mga paghihigpit, 7 at -3, kaya ang produkto ng dalawang pag-andar, ay dapat may * parehong * mga paghihigpit. Kadalasan kapag may mga operasyon sa mga pag-andar, kung ang mga naunang pag-andar (f (x) at g (x) ay may mga paghihigpit, palaging kinukuha ito bilang bahagi ng bagong paghihigpit ng bagong function, o ang kanilang operasyon. Maaari
Ang graph ng function f (x) = (x + 2) (x + 6) ay ipinapakita sa ibaba. Alin ang pahayag tungkol sa pag-andar ay totoo? Ang function ay positibo para sa lahat ng tunay na halaga ng x kung saan x> -4. Ang pag-andar ay negatibo para sa lahat ng tunay na halaga ng x kung saan -6 <x <-2.
Ang pag-andar ay negatibo para sa lahat ng tunay na halaga ng x kung saan -6 <x <-2.
Alin ang mga katangian ng graph ng function f (x) = (x + 1) ^ 2 + 2? Suriin ang lahat ng nalalapat. Ang domain ay lahat ng tunay na numero. Ang hanay ay ang lahat ng tunay na mga numero na mas malaki kaysa o katumbas ng 1. Ang y-intercept ay 3. Ang graph ng function ay 1 unit up at
Una at pangatlo ay totoo, pangalawang ay mali, ikaapat ay hindi natapos. - Ang domain ay talagang lahat ng tunay na mga numero. Maaari mong muling isulat ang function na ito bilang x ^ 2 + 2x + 3, na isang polinomyal, at sa gayon ay may domain mathbb {R} Ang hanay ay hindi lahat ng totoong bilang na mas malaki kaysa sa o katumbas ng 1, dahil ang minimum ay 2. Sa katotohanan. (x + 1) ^ 2 ay isang pahalang na pagsasalin (isang natitirang yunit) ng "strandard" na parabola x ^ 2, na may saklaw na [0, na hindi mabibili]. Kapag nagdagdag ka ng 2, inililipat mo ang graph patayo sa pamamagitan ng dalawang yunit, kaya ang