Sagot:
Paliwanag:
Pagbabahagi ng
Muling pagsusulat
Ang bilang ng isang nakaraang taon ay hinati ng 2 at ang resulta ay nakabaligtad at hinati ng 3, pagkatapos ay iniwan sa kanang bahagi at hinati sa 2. Pagkatapos ang mga digit sa resulta ay binabaligtad upang gawing 13. Ano ang nakaraang taon?
Kulay (pula) ("xxx"), rarr ["resulta" 0]), (["resulta" 0] div 2, "[resulta] 1]), ([" resulta "1]" nakabaligtad ",, rarr [" resulta "2]), ([" resulta "2]" hinati sa "3, "3"), (("kaliwa sa kanang bahagi"), ("walang pagbabago"), (["resulta" 3] div 2, ("XX") ["resulta" 4] = 31 kulay (puti) ("XX") [ "resulta" 3] = 62 kulay (puti) ("XX") ["resulta" 2] = 186 kulay (puti) ("XX") ["resulta" 1] = 981color ipinapalagay na "naka
Kapag ang isang polinomyal ay hinati sa (x + 2), ang natitira ay -19. Kapag ang parehong polinomyal ay hinati sa (x-1), ang natitira ay 2, paano mo matukoy ang natitira kapag ang polinomyal ay hinati ng (x + 2) (x-1)?
Alam namin na ang f (1) = 2 at f (-2) = - 19 mula sa Remainder Theorem Ngayon mahanap ang natitira sa polynomial f (x) kapag hinati ng (x-1) (x + 2) ang form na Ax + B, dahil ito ay ang natitira pagkatapos ng dibisyon sa pamamagitan ng isang parisukat. Maaari naming multiply ang mga oras ng divisor ang quotient Q ... f (x) = Q (x-1) (x + 2) + Ax + B Susunod, ipasok ang 1 at -2 para sa x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) B = -2A + B = -19 Paglutas ng dalawang equation, nakukuha natin ang A = 7 at B = -5 Remainder = Ax + B = 7x-5
Kapag ang polynomial p (x) ay hinati sa (x + 2) ang quotient ay x ^ 2 + 3x + 2 at ang natitira ay 4. Ano ang polynomial p (x)?
X ^ 3 + 5x ^ 2 + 8x + 6 Mayroon kaming p (x) = (x ^ 2 + 3x + 2) (x + 2) +2 = x ^ 3 + 2x ^ 2 + 3x ^ 2 + 6x + 2x + 4 + 2 = x ^ 3 + 5x ^ 2 + 8x + 6