Sagot:
Domain:
Saklaw:
Paliwanag:
graph {-2 (x + 3) ^ 2-5 -11.62, 8.38, -13.48, -3.48}
Ito ang parisukat (polinomyal) na pag-andar kaya walang mga punto ng pagpalya at samakatuwid ay ang domain
Gayunpaman, ang function ay bounded tulad ng makikita mo sa graph kaya kailangan namin upang mahanap ang itaas na bound.
Kaya,
Panghuli:
Domain:
Saklaw:
Ipakita na cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ako ay medyo nalilito kung gumawa ako Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ito ay magiging negatibo bilang cos (180 ° -theta) = - costheta sa ang pangalawang kuwadrante. Paano ko mapapatunayan ang tanong?
Mangyaring tingnan sa ibaba. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Ang domain ng f (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa 7, at ang domain ng g (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa -3. Ano ang domain ng (g * f) (x)?
Lahat ng mga tunay na numero maliban sa 7 at -3 kapag multiply mo ang dalawang mga function, ano ang ginagawa namin? kinukuha namin ang halaga ng f (x) at i-multiply ito sa pamamagitan ng g (x) na halaga, kung saan ang x ay dapat na pareho. Gayunpaman ang parehong mga pag-andar ay may mga paghihigpit, 7 at -3, kaya ang produkto ng dalawang pag-andar, ay dapat may * parehong * mga paghihigpit. Kadalasan kapag may mga operasyon sa mga pag-andar, kung ang mga naunang pag-andar (f (x) at g (x) ay may mga paghihigpit, palaging kinukuha ito bilang bahagi ng bagong paghihigpit ng bagong function, o ang kanilang operasyon. Maaari
Kung ang function f (x) ay may domain na -2 <= x <= 8 at isang hanay ng -4 <= y <= 6 at ang function na g (x) ay tinukoy ng formula g (x) = 5f ( 2x)) kung gayon ano ang domain at hanay ng g?
Nasa ibaba. Gamitin ang basic transformations function upang mahanap ang bagong domain at range. Ang 5f (x) ay nangangahulugan na ang pag-andar ay patayo sa pamamagitan ng isang factor ng limang. Samakatuwid, ang bagong hanay ay sumasaklaw ng agwat na limang beses na mas malaki kaysa sa orihinal. Sa kaso ng f (2x), isang horizontal stretch sa pamamagitan ng isang factor ng isang kalahati ay inilalapat sa function. Samakatuwid ang mga paa't kamay ng domain ay halved. Et voilà!