Ano ang domain at saklaw ng y = x ^ 2-2?

Ano ang domain at saklaw ng y = x ^ 2-2?
Anonim

Sagot:

Gumamit ng lohikal na pangangatwiran upang mahanap ang domain at mga hanay ng mga function.

Paliwanag:

Ang domain ng isang function ay ang lahat ng mga halaga ng # x # na maaaring ilagay sa walang pagkuha ng isang hindi natukoy na sagot. Sa iyong kaso kung sa tingin namin tungkol dito ay may anumang halaga ng # x # na 'sisira' ang equation? Walang walang kaya ang domain ng function na ang lahat ng mga tunay na halaga ng # x # na kung saan ay nakasulat bilang #x sa RR #.

Ang saklaw ng isang function ay ang hanay ng mga posibleng halaga # y # ay maaaring maging. Sa iyong kaso mayroon kaming isang # x ^ 2 # na nangangahulugang magagawa natin hindi kailanman may negatibong halaga ng # x ^ 2 #. Ang pinakamababang halaga ng # x ^ 2 # maaari naming magkaroon ng 0, kung inilalagay namin sa isang # x # halaga ng 0.

Given na -2 sa dulo ng equation na ito ay nangangahulugan na ang pinakamababang posibleng halaga ng # y # makakakuha tayo ng -2, ibig sabihin ang saklaw ng function ay: #y> = -2 #