Sagot:
Haba:
Paliwanag:
Ang pinakamadaling paraan upang makita ito ay ang tandaan na ang parehong mga punto ay nasa parehong pahalang na linya (
Kung talagang gusto mong magamit ang mas pangkalahatang pormula ng distansya:
Si Jane, Maria, at Ben ay may isang koleksyon ng mga koleksyon ng mga lilok na yari sa marmol. Si Jane ay may 15 higit pang mga koleksyon ng mga lilok na yari sa marmol kaysa kay Ben, at si Maria ay may 2 beses na maraming mga koleksyon ng mga lilok na yari sa marmol bilang Ben Lahat sila ay may 95 mga koleksyon ng mga lilok na yari sa marmol. Gumawa ng isang equation upang matukoy kung gaano karaming mga koleksyon ng mga lilok na yari sa marmol Jane, Maria, at Ben ay may?
Si Ben ay may 20 marbles, Jane ay may 35 at si Maria ay may 40 Hayaan x ay ang halaga ng mga marbles Ben ay Pagkatapos Pagkatapos ay may x + 15 at Maria ay may 2x 2x + x + 15 + x = 95 4x = 80 x = 20 samakatuwid, ang Ben ay may 20 mga koleksyon ng mga lilok na yari sa marmol, Jane ay may 35 at Maria ay may 40
Ang PERIMETER ng isosceles trapezoid ABCD ay katumbas ng 80cm. Ang haba ng linya AB ay 4 beses na mas malaki kaysa sa haba ng isang linya ng CD na 2/5 ang haba ng linya BC (o ang mga linya na pareho sa haba). Ano ang lugar ng trapezoid?
Ang lugar ng trapezium ay 320 cm ^ 2. Hayaan ang trapezium na tulad ng ipinapakita sa ibaba: Dito, kung ipinapalagay namin ang mas maliit na bahagi ng CD = a at mas malaking bahagi AB = 4a at BC = a / (2/5) = (5a) / 2. Tulad ng BC = AD = (5a) / 2, CD = a at AB = 4a Kaya ang perimeter ay (5a) / 2xx2 + a + 4a = 10a Ngunit ang perimeter ay 80 cm .. Kaya isang = 8 cm. at dalawang magkatugmang panig na ipinapakita bilang a at b ay 8 cm. at 32 cm. Ngayon, gumuhit kami ng mga perpendiculars fron C at D sa AB, na bumubuo ng dalawang magkatulad na tamang angled triangue, na ang hypotenuse ay 5 / 2xx8 = 20 cm. at base ay (4xx8-8) /
Ang segment ng linya ay may mga endpoint sa (a, b) at (c, d). Ang segment na linya ay pinalaki ng isang kadahilanan ng r sa paligid (p, q). Ano ang mga bagong endpoint at haba ng line segment?
(a-b) sa (1-r) p + ra, (1-r) q + rb), (c, d) hanggang ((1-r) p + bagong haba l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Mayroon akong isang teorya sa lahat ng mga tanong na ito ay narito kaya may isang bagay para sa mga newbies gawin. Gagawin ko ang pangkalahatang kaso dito at makita kung ano ang mangyayari. Isinasalin namin ang eroplanong kaya ang mga mapa ng pagpapalawig P sa pinagmulan. Kung gayon ang paglalagkad ay tumutukoy sa mga coordinate sa pamamagitan ng isang kadahilanan ng r. Pagkatapos ay isinasalin namin ang likod ng eroplano: A '= r (A - P) + P = (1-r) P + r A Iyan ang parametric equation para sa isang linya sa p