Sagot:
Paliwanag:
# "ang equation ng isang linya sa" kulay (bughaw) "point-slope form" # ay.
# • kulay (puti) (x) y-y_1 = m (x-x_1) #
# "kung saan m ay ang slope at" (x_1, y_1) "isang punto sa linya" #
# "dito" m = 5 "at" (x_1, y_1) = (- 3,2) #
# "ang pagpapalit sa mga halagang ito sa equation ay nagbibigay ng" #
# y-2 = 5 (x - (- 3)) #
# y-2 = 5 (x + 3) larrcolor (pula) "sa point-slope form" #
Hayaan ang P (x_1, y_1) maging isang punto at ipaalam l ang linya na may equation na palakol + sa pamamagitan ng c = 0.Ipakita ang distansya d mula sa P-> l ay ibinibigay sa pamamagitan ng: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Hanapin ang distansya d ng punto P (6,7) mula sa linya l na may equation 3x + 4y = 11?
D = 7 Hayaan l-> a x + b y + c = 0 at p_1 = (x_1, y_1) isang punto na hindi sa l. Kung kaya ang b ne 0 at pagtawag d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 matapos ang pagpapalit ng y = - (a x + c) / b sa d ^ 2 mayroon tayong d ^ 2 = ( x - x_1) ^ 2 + ((c + palakol) / b + y_1) ^ 2. Ang susunod na hakbang ay hanapin ang d ^ 2 pinakamaliit tungkol sa x kaya matutuklasan natin ang x na d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 Ang mga okours para sa x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Ngayon, ang pagpapalit sa halaga na ito sa d ^ 2 ay nakakuha tayo d ^ 2 = (c + isang x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2)
Ang isang linya ay dumadaan sa (8, 1) at (6, 4). Ang pangalawang linya ay dumadaan sa (3, 5). Ano ang isa pang punto na maaaring pumasa sa ikalawang linya kung ito ay parallel sa unang linya?
(1,7) Kaya kailangan muna nating hanapin ang direksyon ng vector sa pagitan ng (8,1) at (6,4) (6,4) - (8,1) = (- 2,3) Alam namin na ang isang equation ng vector ay binubuo ng isang vector na posisyon at isang vector ng direksyon. Alam namin na ang (3,5) ay isang posisyon sa vector equation upang maaari naming gamitin na bilang aming vector posisyon at alam namin na ito ay parallel ang iba pang mga linya upang maaari naming gamitin ang vector ng direksyon (x, y) = (3, 4) + s (-2,3) Upang makahanap ng isa pang punto sa linya ay magpalit lamang ng anumang numero sa s bukod sa 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Kaya (1,7) ay
Ang isang linya ay dumadaan sa (4, 3) at (2, 5). Ang pangalawang linya ay dumadaan sa (5, 6). Ano ang isa pang punto na maaaring pumasa sa ikalawang linya kung ito ay parallel sa unang linya?
(3,8) Kaya kailangan muna nating hanapin ang direksyon ng vector sa pagitan ng (2,5) at (4,3) (2,5) - (4,3) = (- 2,2) Alam natin na ang isang equation ng vector ay binubuo ng isang vector na posisyon at isang vector ng direksyon. Alam namin na ang (5,6) ay isang posisyon sa vector equation upang maaari naming gamitin iyon bilang aming posisyon vector at alam namin na ito ay parallel sa iba pang mga linya upang maaari naming gamitin ang vector na direksyon (x, y) = (5, 6) + s (-2,2) Upang makahanap ng isa pang punto sa linya lamang kapalit ng anumang numero sa s bukod sa 0 kaya nagbibigay-daan sa pumili ng 1 (x, y) = (5,6)