Sagot:
Paliwanag:
k ay totoo
Ipakita na cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ako ay medyo nalilito kung gumawa ako Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ito ay magiging negatibo bilang cos (180 ° -theta) = - costheta sa ang pangalawang kuwadrante. Paano ko mapapatunayan ang tanong?
Mangyaring tingnan sa ibaba. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Ang domain ng f (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa 7, at ang domain ng g (x) ay ang hanay ng lahat ng mga tunay na halaga maliban sa -3. Ano ang domain ng (g * f) (x)?
Lahat ng mga tunay na numero maliban sa 7 at -3 kapag multiply mo ang dalawang mga function, ano ang ginagawa namin? kinukuha namin ang halaga ng f (x) at i-multiply ito sa pamamagitan ng g (x) na halaga, kung saan ang x ay dapat na pareho. Gayunpaman ang parehong mga pag-andar ay may mga paghihigpit, 7 at -3, kaya ang produkto ng dalawang pag-andar, ay dapat may * parehong * mga paghihigpit. Kadalasan kapag may mga operasyon sa mga pag-andar, kung ang mga naunang pag-andar (f (x) at g (x) ay may mga paghihigpit, palaging kinukuha ito bilang bahagi ng bagong paghihigpit ng bagong function, o ang kanilang operasyon. Maaari
Alin ang mga katangian ng graph ng function f (x) = (x + 1) ^ 2 + 2? Suriin ang lahat ng nalalapat. Ang domain ay lahat ng tunay na numero. Ang hanay ay ang lahat ng tunay na mga numero na mas malaki kaysa o katumbas ng 1. Ang y-intercept ay 3. Ang graph ng function ay 1 unit up at
Una at pangatlo ay totoo, pangalawang ay mali, ikaapat ay hindi natapos. - Ang domain ay talagang lahat ng tunay na mga numero. Maaari mong muling isulat ang function na ito bilang x ^ 2 + 2x + 3, na isang polinomyal, at sa gayon ay may domain mathbb {R} Ang hanay ay hindi lahat ng totoong bilang na mas malaki kaysa sa o katumbas ng 1, dahil ang minimum ay 2. Sa katotohanan. (x + 1) ^ 2 ay isang pahalang na pagsasalin (isang natitirang yunit) ng "strandard" na parabola x ^ 2, na may saklaw na [0, na hindi mabibili]. Kapag nagdagdag ka ng 2, inililipat mo ang graph patayo sa pamamagitan ng dalawang yunit, kaya ang