Sagot:
Paliwanag:
Ang parisukat na formula ay:
Ang koepisyent para sa
Solusyon:
Ang formula para sa paghahanap ng lugar ng isang parisukat ay A = s ^ 2. Paano mo ibahin ang formula na ito upang makahanap ng formula para sa haba ng isang gilid ng isang parisukat na may isang lugar A?
S = sqrtA Gamitin ang parehong formula at baguhin ang paksa na s. Sa ibang salita ihiwalay ang s. Karaniwan ang proseso ay tulad ng sumusunod: Magsimula sa pamamagitan ng pag-alam sa haba ng panig. "side" rarr "square the side" rarr "Area" Do exactly the opposite: read from right to left "side" larr "find the square root" larr "Area" In Maths: s ^ 2 = A s = sqrtA
Ang haba ng bawat panig ng parisukat A ay nadagdagan ng 100 porsiyento upang gumawa ng square B. Pagkatapos ang bawat panig ng parisukat ay nadagdagan ng 50 porsiyento upang gawing parisukat C. Sa pamamagitan ng anong porsyento ang lugar ng parisukat C na mas malaki kaysa sa kabuuan ng mga lugar ng parisukat A at B?
Ang lugar ng C ay 80% na mas malaki kaysa sa lugar ng A + na lugar ng B Tukuyin bilang isang yunit ng pagsukat sa haba ng isang bahagi ng A. Ang lugar ng A = 1 ^ 2 = 1 sq.unit Ang haba ng panig ng B ay 100% higit pa kaysa haba ng panig ng isang rarr Haba ng panig ng B = 2 yunit ng Area ng B = 2 ^ 2 = 4 sq.units. Ang haba ng panig ng C ay 50% higit pa kaysa sa haba ng gilid ng B rarr Haba ng panig ng C = 3 yunit ng Area ng C = 3 ^ 2 = 9 sq.units Ang lugar ng C ay 9- (1 + 4) = 4 sq.units mas malaki kaysa sa pinagsamang mga lugar ng A at B. 4 sq.units kumakatawan sa 4 / (1 + 4) = 4/5 ng pinagsamang lugar ng A at B. 4/5 = 80%
Ano ang parisukat na ugat ng 3 + ang parisukat na ugat ng 72 - ang parisukat na ugat ng 128 + ang parisukat na ugat ng 108?
(108) Alam namin na ang 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, kaya sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) 3, kaya sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt , kaya sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3)