Sagot:
May mga vertical asymptotes sa
Paliwanag:
Upang tingnan ang problemang ito ay gagamitin ko ang pagkakakilanlan:
Mula dito nakikita natin na mayroong mga vertical asymptotes tuwing
Mula noon
Ang pag-andar ay walang mga butas, dahil ang mga butas ay nangangailangan ng parehong tagabilang at ang denamineytor na pantay
Ano ang mga (mga) asymptote at butas (s), kung mayroon man, ng f (x) = 1 / cosx?
Magkakaroon ng mga vertical asymptotes sa x = pi / 2 + pin, n at integer. Magkakaroon ng mga asymptotes. Sa tuwing ang denamineytor ay katumbas ng 0, nangyayari ang mga vertical na asymptote. Let's set the denominator sa 0 at lutasin. Cosx = 0 x = pi / 2, (3pi) / 2 Dahil ang function y = 1 / cosx ay pana-panahon, magkakaroon ng walang katapusang vertical asymptotes, lahat ng sumusunod na pattern x = pi / 2 + pin, n isang integer. Panghuli, tandaan na ang function y = 1 / cosx ay katumbas ng y = secx. Sana ay makakatulong ito!
Ano ang mga (mga) asymptote at butas (s), kung mayroon man, ng f (x) = e ^ x / (x (x-e) (x-1)?
Upang mahanap ang mga asymptotes, hanapin ang mga paghihigpit sa equation. Sa tanong na ito, ang denamineytor ay hindi maaaring katumbas ng 0, kaya itakda ang bawat kadahilanan na katumbas ng 0 upang mahanap ang mga asymptotes. x = 0, x-e = 0, x-1 = 0 x = 0, x = e, x = 1 Ang iyong VAs ay 0, e, at 1
Ano ang mga (mga) asymptote at butas (s), kung mayroon man, ng f (x) = (x ^ 2-1) / (x ^ 4-1)?
Double asymptote y = 0 f (x) = (x ^ 2-1) / (x ^ 4-1) = (x ^ 2-1) / ((x ^ 2 + 1) (x ^ 2-1)) = 1 / (x ^ 2 + 1) Kaya f (x) ay may double asymptote na characterized bilang y = 0