Ano ang graph ng r = 2a (1 + cosθ)?

Ano ang graph ng r = 2a (1 + cosθ)?
Anonim

Sagot:

Ang iyong polar plot ay dapat magmukhang ganito:

Paliwanag:

Ang tanong ay humihiling sa amin na lumikha ng polar plot ng isang function ng anggulo, # theta #, na nagbibigay sa atin # r #, ang distansya mula sa pinagmulan. Bago simulan ang dapat naming makakuha ng isang ideya ng hanay ng # r # mga halaga na maaari naming asahan. Iyon ay makakatulong sa amin na magpasya sa isang scale para sa aming mga axes.

Ang pag-andar #cos (theta) # May hanay #-1,+1# kaya ang dami sa panaklong # 1 + cos (theta) # May hanay #0,2#. Pagkatapos ay pinarami namin iyon # 2a # pagbibigay:

# r = 2a (1 + cos (theta)) sa 0,4a #

Ito ang pagkakaiba sa pinanggalingan, na maaaring maging sa anumang anggulo, kaya gumawa tayo ng mga palakol, # x # at # y # tumakbo mula sa # -4a # sa # + 4a # kung sakaling:

Susunod, ito ay kapaki-pakinabang upang makagawa ng isang talahanayan ng halaga ng aming function. Alam namin iyan #theta in 0,360 ^ o # at hayaan ang break na ito sa 25 puntos (ginagamit namin ang 25 dahil na gumagawa ng 24 mga hakbang sa pagitan ng mga punto na ang mga anggulo ng # 15 ^ o #):

Kasama rin dito ang pagkalkula ng mga coordinate ng Cartesian ng bawat punto kung saan # x = r * cos theta # at # y = r * sin theta #. May pagpipilian na kami ngayon, maaari naming i-plot ang mga punto gamit ang protractor para sa anggulo at ruler para sa radius, o gamitin lamang ang # (x, y) # coordinates. Kapag tapos ka na, dapat kang magkaroon ng isang bagay na mukhang ganito: