Kung pinapasimple natin ang equation sa pamamagitan ng paghati sa magkabilang panig
Ang tamang tatsulok na
Pinadadali ito sa
Samakatuwid ang equation ay totoo para sa
Ipakita na cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ako ay medyo nalilito kung gumawa ako Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ito ay magiging negatibo bilang cos (180 ° -theta) = - costheta sa ang pangalawang kuwadrante. Paano ko mapapatunayan ang tanong?
Mangyaring tingnan sa ibaba. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Ang likas na numero ay nakasulat lamang sa 0, 3, 7. Patunayan na ang isang perpektong parisukat ay hindi umiiral. Paano ko patunayan ang pahayag na ito?
Ang sagot: Ang lahat ng mga perpektong parisukat ay nagtatapos sa 1, 4, 5, 6, 9, 00 (o 0000, 000000 at iba pa) Ang isang numero na nagtatapos sa 2, kulay (pula) 3, kulay (pula) 7, 8 at kulay (pula) 0 ay hindi isang perpektong parisukat. Kung ang likas na numero ay binubuo ng mga tatlong digit (0, 3, 7), ito ay hindi maiiwasan na ang bilang ay dapat tapusin sa isa sa mga ito. Tulad na ang likas na bilang na ito ay hindi maaaring maging isang perpektong parisukat.
Paano mo patunayan na ang sqrt (3) cos (x + pi / 6) - cos (x + pi / 3) = cos (x) -sqrt3sinx?
(X-pi / 3) = sqrt3 [cosx * cos (pi / 6) -sinx * sin (pi / 6)] - [cosx * cos (pi / 3) -sinx * sin (pi / 3)] = sqrt3 [cosx * (sqrt3 / 2) -inx * (1/2)] - [cosx * (1/2) -sinx * (sqrt3 / 2)] = (3cosx 2qxq-sqrt3sinx-cosx + sqrt3sinx) / 2 = (2cosx) / 2 = cosx = RHS