Tama ba o mali ang equation na ito kung w-7 <-3, pagkatapos w-7> -3 o w-7 <3, kung ito ay hindi totoo kung paano ito maitatama?
Abs (w-7) <-3 ay hindi totoo. Para sa anumang numero x, mayroon kaming absx> = 0 upang hindi kami puwedeng magkaroon ng absx <-3
Ang function f ay tulad na f (x) = a ^ 2x ^ 2-palakol + 3b para sa x <1 / (2a) Kung saan a at b ay pare-pareho para sa kaso kung saan a = 1 at b = -1 Hanapin f ^ 1 (cf at hanapin ang domain nito alam ko ang domain ng f ^ -1 (x) = saklaw ng f (x) at ito ay -13/4 ngunit hindi ko alam ang hindi pagkakapareho sign direksyon?
Tingnan sa ibaba. isang ^ 2x ^ 2-palakol + 3b x ^ 2-x-3 Saklaw: Ilagay sa anyo y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1 / (h) = f (1/2) = (1/2) ^ 2 (1/2) -3 = -13 / 4 Pinakamababang halaga -13/4 Ito ay nangyayari sa x = 1/2 Kaya hanay ay (- (X) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Paggamit ng quadratic formula: y = (- (- 1) + 2q = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Sa isang maliit na pag-iisip na nakikita natin na para sa domain na mayroon kaming kinakailangang kabaligtaran : - (1-sqrt (4x + 13)) / 2 Sa domain: (-13 / 4, oo) Pansinin na may limitasy
X2 + 14x-15 = 0 sa equation na ito na idagdag ang LHS bilang isang perpektong parisukat 49. kung paano ang 49 na ito ay darating ... mangyaring sabihin tungkol sa 49 ??? kung paano ito kinakalkula
X = 1, at x = - 15 x ^ 2 + 14x - 15 = 0 D = d ^ 2 = b ^ 2 - 4ac = 196 + 60 = 256 -> d = + - 16 May 2 real roots: = - b / (2a) + - d / (2a) = - 14/2 + - 16/2 x = - 7 + - 8 a. x1 = - 7 + 8 = 1 b. x2 = -7 - 8 = - 15 Tandaan. Dahil ang isang + b + c = 0, ginagamit namin ang shortcut. Ang isang tunay na ugat ay x1 = 1, at ang iba ay x2 = c / a = - 15.