Ano ang pinagmulan ng 10 ^ x?

Ano ang pinagmulan ng 10 ^ x?
Anonim

Mayroong isang panuntunan para sa pagkakaiba-iba ng mga function na ito

# (d) / (dx) a ^ u = (ln a) * (a ^ u) * (du) / (dx) #

Pansinin na para sa aming problema a = 10 at u = x kaya ipasok natin ang alam natin.

# (d) / (dx) 10 ^ x = (ln 10) * (10 ^ x) * (du) / (dx) #

kung # u = x # kung gayon, # (du) / (dx) = 1 #

dahil sa panuntunan ng kapangyarihan: # (d) / (dx) x ^ n = n * x ^ (n-1) #

kaya, bumalik sa aming problema, # (d) / (dx) 10 ^ x = (ln 10) * (10 ^ x) * (1) #

na nagpapadali sa # (d) / (dx) 10 ^ x = (ln 10) * (10 ^ x) #

Ito ay gagana ang parehong kung ikaw ay isang bagay na mas kumplikado kaysa sa x.

Ang isang pulutong ng calculus ay may kaugnayan sa kakayahang maugnay ang ibinigay na problema sa isa sa mga alituntunin ng pagkita ng kaibhan. Kadalasan ay kailangan nating baguhin ang paraan ng pagtingin sa problema bago tayo magsimula, gayunpaman hindi ito ang kaso sa problemang ito.