Ipagpalagay na z = x + yi, kung saan ang x at y ay tunay na mga numero. Kung ang (iz-1) / (z-i) ay isang tunay na numero, ipakita na kapag ang (x, y) ay hindi katumbas (0, 1), x ^ 2 + y ^ 2 = 1?

Ipagpalagay na z = x + yi, kung saan ang x at y ay tunay na mga numero. Kung ang (iz-1) / (z-i) ay isang tunay na numero, ipakita na kapag ang (x, y) ay hindi katumbas (0, 1), x ^ 2 + y ^ 2 = 1?
Anonim

Sagot:

Mangyaring tingnan sa ibaba,

Paliwanag:

Bilang # z = x + iy #

# (iz-1) / (z-i) = (i (x + iy) -1) / (x + iy-i) #

= # (ix-y-1) / (x + i (y-1)) #

= # (ix- (y + 1)) / (x + i (y-1)) xx (x-i (y-1)

= # ((ix- (y + 1)) (x-i (y-1))) / (x ^ 2 + (y-1) ^ 2) #

= # (ix ^ 2 + x (y-1) -x (y + 1) + i (y ^ 2-1)) / (x ^ 2 + (y-1) ^ 2) #

= # (x ((y-1) - (y + 1)) + i (x ^ 2 + y ^ 2-1)) / (x ^ 2 + (y-1) ^ 2) #

= # (- 2x + i (x ^ 2 + y ^ 2-1)) / (x ^ 2 + (y-1) ^ 2) #

Bilang # (iz-1) / (z-i) # ay totoo

# (x ^ 2 + y ^ 2-1) = 0 # at # x ^ 2 + (y-1) ^ 2! = 0 #

Ngayon bilang # x ^ 2 + (y-1) ^ 2 # ay kabuuan ng dalawang mga parisukat, maaaring ito ay zero lamang kapag # x = 0 # at # y = 1 # i.e.

kung # (x, y) # ay hindi #(0,1)#, # x ^ 2 + y ^ 2 = 1 #