Ano ang ikalawang termino ng (p + q) ^ 5?

Ano ang ikalawang termino ng (p + q) ^ 5?
Anonim

Sagot:

# 5p ^ 4q #

Paliwanag:

Gamitin ang binomial teorama

# (p + q) ^ n = sum_ (k = 0) ^ (n) (n!) / ((k!) (n-k)!) p ^ (n-k) q ^ k #

Para sa ikalawang termino, # n #= 5 at # k #=1 (# k # ay 1 para sa ikalawang termino at 0 para sa unang termino) upang ang compute namin ang term sa kabuuan ng kung kailan # k #=1

# (5!) / ((1!) (5-1)!) P ^ (5-1) q ^ 1 = 5p ^ 4q #

Dahil ang problemang ito ay napakatagal, palawakin natin ang BUONG pagpapahayag upang bigyan ka ng isang mas mahusay na larawan ng kung ano ang nangyayari.

# (p + q) ^ 5 = (5!) / ((0!) (5-0)!) p ^ (5-0) q ^ 0 + (5!) / ((1!) (5- 1)!) P ^ (5-1) q ^ 1 + (5!) / ((2!) (5-2)!) P ^ (5-2) q ^ 2 + (5!) / ((3!) (5-3)!) P ^ (5-3) q ^ 3 + (5!) / ((4!) (5-4)!) P ^ (5-4) q ^ 4 + (5!) / ((5!) (5-5)!) P ^ (5-5) q ^ 5 #

# = (5!) / ((1) 5!) P ^ 5 + (5!) / ((1) 4!) P ^ 4q ^ 1 + (5!) / (2! ^ 2 + (5!) / (3! 2!) P ^ (2) q ^ 3 + (5!) / (4! (1)) p ^ 1q ^ 4 + (5!) / (5! 1)) q ^ 5 #

(5 * 4) / 2p ^ 3q ^ 2 + (5 * 4) / 2p ^ (2) q ^ 3 + 5p ^ 1q ^ 4 + q ^ 5 #

# = p ^ 5 + 5p ^ 4q + 10p ^ 3q ^ 2 + 10p ^ (2) q ^ 3 + 5pq ^ 4 + q ^ 5 #