Sagot:
Ang haba ng segment ay
Paliwanag:
Ang formula para sa pagkalkula ng distansya sa pagitan ng dalawang punto ay:
Ang pagpapalit ng mga halaga mula sa mga punto sa problema at paglutas ay nagbibigay ng:
Ang PERIMETER ng isosceles trapezoid ABCD ay katumbas ng 80cm. Ang haba ng linya AB ay 4 beses na mas malaki kaysa sa haba ng isang linya ng CD na 2/5 ang haba ng linya BC (o ang mga linya na pareho sa haba). Ano ang lugar ng trapezoid?
Ang lugar ng trapezium ay 320 cm ^ 2. Hayaan ang trapezium na tulad ng ipinapakita sa ibaba: Dito, kung ipinapalagay namin ang mas maliit na bahagi ng CD = a at mas malaking bahagi AB = 4a at BC = a / (2/5) = (5a) / 2. Tulad ng BC = AD = (5a) / 2, CD = a at AB = 4a Kaya ang perimeter ay (5a) / 2xx2 + a + 4a = 10a Ngunit ang perimeter ay 80 cm .. Kaya isang = 8 cm. at dalawang magkatugmang panig na ipinapakita bilang a at b ay 8 cm. at 32 cm. Ngayon, gumuhit kami ng mga perpendiculars fron C at D sa AB, na bumubuo ng dalawang magkatulad na tamang angled triangue, na ang hypotenuse ay 5 / 2xx8 = 20 cm. at base ay (4xx8-8) /
Ano ang haba ng segment ng linya na sumali sa mga puntos (-3, -4) at (2, -5)?
Sqrt26 Gamitin ang distance formula: sqrt ((y_2-y_1) ^ 2 + (x_2-x_1) ^ 2 I-plug in ang iyong mga halaga: sqrt ((5 - (- 4)) ^ 2+ (2 - (- 3) Pag-aralan: sqrt ((1 - 1) ^ 2 + (5) ^ 2) Pasimplehin: sqrt (1 + 25) Pasimplehin: sqrt26 Magbayad ng pansin sa mga positibo at negatibo (halimbawa, ang pagbabawas ng negatibong numero ay katumbas ng karagdagan) .
Ang segment ng linya ay may mga endpoint sa (a, b) at (c, d). Ang segment na linya ay pinalaki ng isang kadahilanan ng r sa paligid (p, q). Ano ang mga bagong endpoint at haba ng line segment?
(a-b) sa (1-r) p + ra, (1-r) q + rb), (c, d) hanggang ((1-r) p + bagong haba l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Mayroon akong isang teorya sa lahat ng mga tanong na ito ay narito kaya may isang bagay para sa mga newbies gawin. Gagawin ko ang pangkalahatang kaso dito at makita kung ano ang mangyayari. Isinasalin namin ang eroplanong kaya ang mga mapa ng pagpapalawig P sa pinagmulan. Kung gayon ang paglalagkad ay tumutukoy sa mga coordinate sa pamamagitan ng isang kadahilanan ng r. Pagkatapos ay isinasalin namin ang likod ng eroplano: A '= r (A - P) + P = (1-r) P + r A Iyan ang parametric equation para sa isang linya sa p