Sagot:
Ito ang form
Paliwanag:
Maaari rin tayong kumuha
Mula noon
Sagot:
Paliwanag:
Maaari itong mapadali sa:
Samakatuwid,
O, maaari mong malutas para sa
Ipakita na cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ako ay medyo nalilito kung gumawa ako Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ito ay magiging negatibo bilang cos (180 ° -theta) = - costheta sa ang pangalawang kuwadrante. Paano ko mapapatunayan ang tanong?
Mangyaring tingnan sa ibaba. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Ang tubig ay bumubuhos sa isang baluktot na korteng kono na may rate na 10,000 cm3 / min at sa parehong oras ay pinapatay ang tubig sa tangke sa isang pare-pareho ang rate Kung ang tangke ay may taas na 6m at ang diameter sa itaas ay 4 m at kung ang antas ng tubig ay tumataas sa isang rate ng 20 cm / min kapag ang taas ng tubig ay 2m, paano mo makita ang rate kung saan ang tubig ay pumped sa tangke?
Hayaan ang V ay ang dami ng tubig sa tangke, sa cm ^ 3; h maging ang lalim / taas ng tubig, sa cm; at hayaan ang radius ng ibabaw ng tubig (sa itaas), sa cm. Dahil ang tangke ay isang inverted kono, kaya ang masa ng tubig. Dahil ang tangke ay may taas na 6 m at isang radius sa tuktok ng 2 m, ang mga katulad na triangles ay nagpapahiwatig na ang frac {h} {r} = frac {6} {2} = 3 upang ang h = 3r. Ang dami ng inverted kono ng tubig ay pagkatapos V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Ngayon, iba-iba ang magkabilang panig tungkol sa oras t (sa ilang minuto) upang makakuha ng frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt
Paano mo ginagampanan ang 56r - 32s?
8 (7r-4s) 56r-32s = (7 * 8 * r) - (8 * 4 * s) Ang karaniwang kadahilanan ay 8 = 8 (7r-4s)