Sagot:
Paliwanag:
Ang
#color (blue) "nth term ng isang geometric sequence" # ay.
#color (pula) (bar (ul (| kulay (puti) (2/2) kulay (itim) (a_n = ar ^ (n-1)) kulay (puti) (2/2) kung saan ang isang ay ang unang term at r, ang karaniwang ratio.
#rArr "ikalimang termino" = ar ^ 4 = -6to (2) # Upang makahanap ng r, hatiin (2) sa pamamagitan ng (1)
#rArr (kanselahin (a) r ^ 4) / (kanselahin (a) r) = (- 6) / 750 #
# rArrr ^ 3 = -1 / 125rArrr = -1 / 5 # Ibahin ang halagang ito sa (1) upang makahanap ng isang
# rArraxx-1/5 = 750 #
# rArra = 750 / (- 1/5) = - 3750 #
Ang ratio sa pagitan ng kasalukuyan edad ng Ram at Rahim ay 3: 2 ayon sa pagkakabanggit. Ang ratio sa pagitan ng mga kasalukuyang edad ng Rahim at Aman ay 5: 2 ayon sa pagkakabanggit. Ano ang ratio sa pagitan ng mga kasalukuyang edad ng Ram at Aman ayon sa pagkakabanggit?
("Ram") / ("Aman") = 15/4 na kulay (kayumanggi) ("Paggamit ng ratio sa FORMAT ng isang fraction") Upang makuha ang mga halaga na kailangan namin maaari naming tingnan ang mga yunit ng pagsukat (identifier). Given: ("Ram") / ("Rahim") at ("Rahim") / ("Aman") Pansin ay ("Ram") / "Rahim")) xx (kanselahin ("Rahim")) / ("Aman") = ("Ram") / ("Aman") ayon sa kinakailangan Kaya lahat ng kailangan nating gawin ay multiply at gawing simple (" ("Aman") = 3 / 2xx5 / 2 = 15/4 Hindi nakapagpasi
Ang kabuuan ng unang apat na termino ng GP ay 30 at ang huling apat na termino ay 960. Kung ang una at huling termino ng GP ay 2 at 512 ayon sa pagkakabanggit, hanapin ang karaniwang ratio.
2root (3) 2. Ipagpalagay na ang karaniwang ratio (cr) ng GP na pinag-uusapan ay r at n ^ (ika) na term ay ang huling term. Dahil dito, ang unang termino ng GP ay 2.: "Ang GP ay" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Given, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (bituin ^ 1), at, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) 2r ^ (n-1) = 960 ... (bituin ^ 2). Alam din namin na ang huling termino ay 512.:. r ^ (n-1) = 512 .................... (bituin ^ 3). Ngayon, (bituin ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, ibig sabihin, (r ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960.
Ang unang termino ng isang geometric sequence ay 200 at ang kabuuan ng unang apat na termino ay 324.8. Paano mo mahanap ang karaniwang ratio?
Ang kabuuan ng anumang geometric sequence ay: s = a (1-r ^ n) / (1-r) s = sum, a = unang kataga, r = karaniwang ratio, n = term na bilang ... Kami ay binibigyan s, a, at n, kaya ... 324.8 = 200 (1-r ^ 4) / (1-r) 1.624 = (1-r ^ 4) / (1-r) 1.624-1.624r = 1-r ^ 4 r ^ 4-1.624r + .624 = 0 r- (r ^ 4-1.624r + .624) / (4r ^ 3-1.624) (3r ^ 4-.624) / (4r ^ 3-1.624) makuha namin .. .5, .388, .399, .39999999, .3999999999999999 Kaya ang limitasyon ay magiging .4 o 4/10 Kaya ang iyong karaniwang ratio ay 4/10 check ... s (4) = 200 (1- (4 / 10) ^ 4)) / (1- (4/10)) = 324.8