Paano mo susuriin ang tiyak na integral int sin2theta mula sa [0, pi / 6]?

Paano mo susuriin ang tiyak na integral int sin2theta mula sa [0, pi / 6]?
Anonim

Sagot:

# int_0 ^ (pi / 6) sin2theta = 1/4 #

Paliwanag:

# int_0 ^ (pi / 6) kasalanan (2theta) d theta #

hayaan

#color (pula) (u = 2theta) #

#color (pula) (du = 2d theta) #

#color (pula) (d theta = (du) / 2) #

Ang mga hangganan ay binago #color (asul) (0, pi / 3) #

# int_0 ^ (pi / 6) sin2thetad theta #

# = int_color (asul) 0 ^ kulay (asul) (pi / 3) sincolor (pula) (u (du) / 2) #

# = 1 / 2int_0 ^ (pi / 3) sinudu #

Tulad ng alam namin ang# intsinx = -cosx #

# = - 1/2 (cos (pi / 3) -cos0) #

#=-1/2(1/2-1)=-1/2*-1/2=1/4#

samakatuwid,# int_0 ^ (pi / 6) sin2theta = 1/4 #