Quotient Rule: -
Kung
Hayaan
Iba ang w.r.t. 'x' gamit ang quotient rule
Mula noon
Samakatuwid
Mula noon
Samakatuwid
Samakatuwid, ang pinagmumulan ng ibinigay na pagpapahayag ay
Ipakita na cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ako ay medyo nalilito kung gumawa ako Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ito ay magiging negatibo bilang cos (180 ° -theta) = - costheta sa ang pangalawang kuwadrante. Paano ko mapapatunayan ang tanong?
Mangyaring tingnan sa ibaba. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Paano mo naiibahin ang sqrt ((x + 1) / (2x-1))?
- (3 (x + 1)) / (2 (2x-1) ^ 2 sqrt ((x + 1) / (2x-1)) f (x) = u ^ n f ' du) / dx xxu ^ (n-1) Sa kasong ito: sqrt ((x + 1) / (2x-1)) = ((x + 1) / (2x-1)) ^ (1/2): n = 1/2, u = (x + 1) / (2x-1) d / dx = 1/2 xx (1xx (2x-1) - 2xx (x + 1)) / (2x-1) ^ 2 xx ((x + 1) / (2x-1)) ^ (1 / 2-1) = 1 / 2xx (-3) / ((2x-1) ^ 2 xx ((x + 1) / (2x- 1)) ^ (1 / 2-1) = - (3 (x + 1)) / (2 (2x-1) ^ 2 ((x + 1) / (2x-1)) ^ (1/2)
Paano mo naiibahin ang (x ^ 2 + x + 3) / sqrt (x-3) gamit ang quotient rule?
H '(x) = - [3 (x + 1)] / ((x-3) ^ (3/2)) Ang panuntunan sa quotient; ibinigay f (x)! = 0 kung h (x) = f (x) / g (x); (x) = (x) * f '(x) -f (x) * g' (x)] / (g (x) x + 3) / root () (x-3) hayaan ang f (x) = x ^ 2 + x + 3 na kulay (pula) (f '(x) = 2x + (x-3) = (x-3) ^ (1/2) kulay (asul) (g '(x) = 1/2 (x-3) ^ (1 / 2-1) = 1/2 -3) ^ (- 1/2) h '(x) = [(x-3) ^ (1/2) * kulay (pula) ((2x + 1)) - kulay (asul) (1/2 ( x-3) ^ (- 1/2)) (x ^ 2 + x + 3)] / (root () [(x-3)] ^ 2 Factor out the greatest common factor 1/2 (x-3) ^ (- 1/2) h '(x) = 1/2 (x-3) ^ (- 1/2) [(x-3) (2x + 1) - (x ^ 2 + x + 3)] / (x-3) => h