Sagot:
Ganap na max:
Ganap na min. ay nasa mga endpoint:
Paliwanag:
Hanapin ang unang hinangong gamit ang tuntunin ng kadena:
Hayaan
Maghanap ng mga kritikal na numero sa pamamagitan ng pagtatakda
Kailan ginagawa
kaya nga
Hanapin ang ika-2 hinalaw:
Suriin upang makita kung mayroon kang isang max sa
Suriin ang mga endpoint:
Mula sa graph:
graph {sin (2x) + cos (2x) -.1,.78539816, -.5, 1.54}
Sagot:
Paliwanag:
graph (Gamitin
Paano i-verify ang Cos2x / (1 + sin2x) = tan (pi / 4-x)?
Mangyaring tingnan ang isang Katunayan sa Paliwanag. (cos2x) / (1 + sin2x), = (cos ^ 2x-sin ^ 2x) / {(cos ^ 2x + sin ^ 2x) + 2sinxcosx}, = {(cosx + sinx) (cosx-sinx)} / = cosx (1-sinx / cosx)} / {cosx (1 + sinx / cosx)}, = (1-tanx) / (cosx + sinx) (1 + tanx), = {tan (pi / 4) -tanx} / {1 + tan (pi / 4) * tanx} quad [dahil tan (pi / 4) = 1] x), gaya ng ninanais!
Patunayan na ang (Sinx + Sin2x + Sin3x) / (cosx + cos2x + cos3x) = tan2x
(3x-x) / 2) + sin2x) / (2cos ((3x + (sinx + sin2x + sin3x) / (cosx + cos2x + cos3x) (2x2x * cosx + cos2x) = (sin2xcancel ((1 + 2cosx))) / (cos2xcancel (( 1 + 2cosx))) = tan2x = RHS
Maaari bang i-verify ng isang tao ito? (cotx-1) / (cotx + 1) = (1-sin2x) / (cos2x)
Ito ay napatunayan sa ibaba: (1-sin2x) / (cos2x) = (sin ^ 2x + cos ^ 2x-2sinxcosx) / (cos2x) [As.color (brown) (sin2x = 2sinxcosxandsin ^ 2x + cos ^ 2x = 1) [cosx-sinx] ^ 2 / (cos ^ 2x-sin ^ 2x) [Bilang, kulay (asul) (cos2x = cos ^ 2x-sin ^ 2x)] = (kanselahin ((cosx-sinx) (cosx / sinx-1)) / (cancelsinx (cosx / sinx + 1)) = (cotx-1) / ( cotx + 1) [Na-verify]