Sagot:
Ang zeroes ng f (x) ay
Paliwanag:
hayaan ang f (x) = 0
kumuha ng square root ng magkabilang panig
x =
Sagot:
Paliwanag:
# "upang mahanap ang set ng zero" f (x) = 0 #
#rArrf (x) = x ^ 2-169 = 0 #
# rArrx ^ 2 = 169 #
#color (asul) "kunin ang square root ng magkabilang panig" #
#rArrx = + - sqrt (169) larrcolor (asul) "tandaan plus o minus" #
#rArrx = + - 13larrcolor (asul) "ang mga zero" #
Sagot:
Paliwanag:
Tumawag kami ng zero ng isang function sa mga halaga ng
Sa aming kaso, kailangan nating lutasin
Ang mga salitang naglilipat, mayroon tayo
Ang graph ng function f (x) = (x + 2) (x + 6) ay ipinapakita sa ibaba. Alin ang pahayag tungkol sa pag-andar ay totoo? Ang function ay positibo para sa lahat ng tunay na halaga ng x kung saan x> -4. Ang pag-andar ay negatibo para sa lahat ng tunay na halaga ng x kung saan -6 <x <-2.
Ang pag-andar ay negatibo para sa lahat ng tunay na halaga ng x kung saan -6 <x <-2.
Alin ang mga katangian ng graph ng function f (x) = (x + 1) ^ 2 + 2? Suriin ang lahat ng nalalapat. Ang domain ay lahat ng tunay na numero. Ang hanay ay ang lahat ng tunay na mga numero na mas malaki kaysa o katumbas ng 1. Ang y-intercept ay 3. Ang graph ng function ay 1 unit up at
Una at pangatlo ay totoo, pangalawang ay mali, ikaapat ay hindi natapos. - Ang domain ay talagang lahat ng tunay na mga numero. Maaari mong muling isulat ang function na ito bilang x ^ 2 + 2x + 3, na isang polinomyal, at sa gayon ay may domain mathbb {R} Ang hanay ay hindi lahat ng totoong bilang na mas malaki kaysa sa o katumbas ng 1, dahil ang minimum ay 2. Sa katotohanan. (x + 1) ^ 2 ay isang pahalang na pagsasalin (isang natitirang yunit) ng "strandard" na parabola x ^ 2, na may saklaw na [0, na hindi mabibili]. Kapag nagdagdag ka ng 2, inililipat mo ang graph patayo sa pamamagitan ng dalawang yunit, kaya ang
Kung f (x) = 3x ^ 2 at g (x) = (x-9) / (x + 1), at x! = - 1, kung ano ang magiging katumbas ng f (g (x))? g (f (x))? f ^ -1 (x)? Ano ang magiging domain, range at zeroes para sa f (x)? Ano ang magiging domain, range at zeroes para sa g (x)?
F (x)) = 3 (x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + (X) = root () (x / 3) D_f = {x sa RR}, R_f = {f (x) sa RR; f (x) 1}, R_g = {g (x) sa RR; g (x)! = 1}