Sagot:
Mayroong dalawang mga hakbang sa paglutas ng tanong na ito: (1) pagkuha ng cross product ng mga vectors at pagkatapos (2) normalizing ang nanggagaling. Sa kasong ito, ang pangwakas na yunit ng vector ay
Paliwanag:
Unang hakbang: krus ang produkto ng mga vectors.
Pangalawang hakbang: gawing normal ang nanggagaling na vector.
Upang gawing normal ang isang vector na hatiin natin ang bawat elemento sa haba ng vector. Upang mahanap ang haba:
Ang paglalagay ng lahat ng sama-sama, ang yunit ng vector orthogonal sa ibinigay na mga vectors ay maaaring kinakatawan bilang:
Ano ang yunit ng vector na orthogonal sa eroplano na naglalaman ng (i + j - k) at (i - j + k)?
Alam namin na kung ang vec C = vec A × vec B pagkatapos vec C ay patayo sa parehong vec A at vec B Kaya, ang kailangan natin ay upang mahanap ang cross product ng ibinigay na dalawang vectors. Kaya, (ang hat + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Ano ang yunit ng vector na orthogonal sa eroplano na naglalaman ng <0, 4, 4> at <1, 1, 1>?
Ang sagot ay = <0,1 / sqrt2, -1 / sqrt2> Ang vector na patayo sa 2 iba pang mga vectors ay ibinigay ng cross product. <0,4,4> x <1,1,1> = | (hati, hatj, hatk), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) = <0,4, -4> Pagpapatunay sa pamamagitan ng paggawa ng mga dot na produkto <0,4,4>. <0,4, -4> = 0 + 16-16 = 0 <1,1,1>. <0,4, -4> = 0 + 4-4 = 0 Ang modulus ng <0,4, -4> ay = <0,4, - 4> = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Ang yunit ng vector ay nakuha sa pamamagitan ng paghati sa vector ng modulus = 1 / (4sqrt2) <0,4, -4> = <0,1 / sqrt2, -1 / s
Ano ang yunit ng vector na orthogonal sa eroplano na naglalaman (20j + 31k) at (32i-38j-12k)?
Ang yunit ng vector ay == 1 / 1507.8 <938,992, -640> Ang vector orthogonal sa 2 vectros sa isang eroplano ay kinakalkula sa determinant | (veci, vecj, veck), (d, e, f), (g, h, i) | kung saan <d, e, f> at <g, h, i> ay ang 2 vectors Narito, mayroon kaming veca = <0,20,31> at vecb = <32, -38, -12> Samakatuwid, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = <938,992, -640> = vecc Verification by doing 2 dot mga produkto <