Sagot:
Tingnan natin ang posibilidad ng walang panalong kard:
Paliwanag:
Unang card non-winning:
Pangalawang card non-winning:
Third non-winning card:
Ang bilang ng mga baraha sa koleksyon ng baseball card ni Bob ay higit sa 3 beses sa bilang ng mga baraha sa Andy. Kung magkasama sila ay may hindi bababa sa 156 card, ano ang hindi bababa sa bilang ng mga baraha na mayroon si Bob?
105 Sabihin nating A ay isang bilang ng card para kay Andy at B ay para kay Bob. Ang bilang ng mga baraha sa baseball card ni Bob, B = 2A + 3 A + B> = 156 A + 2A + 3> = 156 3A> = 156 -3 A> = 153/3 A> = 51 kaya ang hindi bababa sa bilang ng mga baraha na si Bob ay may kapag may pinakamaliit na bilang ng card si Andy. B = 2 (51) +3 B = 105
Tatlong baraha ang napili nang random mula sa isang pangkat ng 7. Dalawang ng mga baraha ang minarkahan ng mga nanalong numero. Ano ang posibilidad na ang eksaktong 1 ng 3 card ay may panalong numero?
Mayroong 7C_3 mga paraan ng pagpili ng 3 card mula sa deck. Iyon ang kabuuang bilang ng mga kinalabasan. Kung nagtatapos ka sa 2 hindi natukoy at 1 markadong card: mayroong 5C_2 mga paraan ng pagpili ng 2 mga hindi naka-marka na card mula sa 5, at 2C_1 mga paraan ng pagpili ng 1 markadong card mula sa 2. Kaya ang posibilidad ay: (5C_2 cdot 2C_1) / ( 7C_3) = 4/7
Tatlong baraha ang napili nang random mula sa isang pangkat ng 7. Dalawang ng mga baraha ang minarkahan ng mga nanalong numero. Ano ang posibilidad na wala sa 3 card ang magkakaroon ng panalong numero?
P ("hindi pumili ng isang nagwagi") = 10/35 Pinipili namin ang 3 cards mula sa isang pool ng 7. Maaari naming gamitin ang formula ng kumbinasyon upang makita ang bilang ng mga iba't ibang paraan na maaari naming gawin iyon: C_ (n, k) = ( n!) / ((k!) (nk)!) na may n = "populasyon", k = "pinili" C_ (7,3) = (7!) / ((3!) (7-3)!) = (7!) / (3! 4!) = (7xx6xx5xx4!) / (3xx2xx4!) = 35 Sa mga 35 paraan, gusto naming piliin ang tatlong baraha na wala sa alinman sa dalawang panalong card. Maaari naming kunin ang 2 winning cards mula sa pool at makita kung gaano karaming mga paraan ang maaari naming pum