Ang dalawang bilog na may pantay na radii r_1 at hinahawakan ang isang line lon sa parehong gilid ng l ay nasa distansya ng x mula sa bawat isa. Ang ikatlong bilog ng radius r_2 ay naka-touch sa dalawang lupon. Paano natin matatagpuan ang taas ng ikatlong bilog mula sa l?
Tingnan sa ibaba. Kung kaya ang x ay ang distansya sa pagitan ng mga perimeter at kung kaya ang 2 (r_1 + r_2) gt x + 2r_1 mayroon kaming h = sqrt ((r_1 + r_2) ^ 2 (r_1 + x / 2) ^ 2) + r_1-r_2 h ang distansya sa pagitan ng l at ang perimeter ng C_2
Gumawa si Gregory ng isang rektanggulo ABCD sa isang coordinate plane. Point A ay nasa (0,0). Ang Point B ay nasa (9,0). Ang Point C ay nasa (9, -9). Ang Point D ay nasa (0, -9). Hanapin ang haba ng side CD?
Side CD = 9 na mga yunit Kung balewalain natin ang mga coordinate y (ang pangalawang halaga sa bawat punto), madaling sabihin na, dahil ang panig ng CD ay nagsisimula sa x = 9, at nagtatapos sa x = 0, ang absolute value ay 9: | 0 - 9 | = 9 Tandaan na ang mga solusyon sa ganap na mga halaga ay palaging positibo Kung hindi mo maintindihan kung bakit ito, maaari mo ring gamitin ang formula ng distansya: P_ "1" (9, -9) at P_ "2" (0, -9 ) Sa sumusunod na equation, P_ "1" ay C at P_ "2" ay D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^ 2 sqrt (0 -
Bibigyan ka ng isang bilog B na ang sentro ay (4, 3) at isang punto sa (10, 3) at isa pang lupon C na ang sentro ay (-3, -5) at isang punto sa bilog na iyon ay (1, -5) . Ano ang ratio ng bilog na B sa bilog na C?
3: 2 "o" 3/2 "kailangan nating kalkulahin ang radii ng mga bilog at ihambing ang radius ay ang distansya mula sa sentro hanggang sa punto sa bilog na" center of B "= (4,3 ) "at punto ay" = (10,3) "yamang ang y-coordinates ay parehong 3, ang radius ay ang pagkakaiba sa x-coordinates" rArr "radius ng B" = 10-4 = 6 "center = "- (1, -5)" Ang y coordinates ay parehong - 5 "rArr" radius ng C "= 1 - (- 3) = 4" ratio " = (kulay (pula) "radius_B") / (kulay (pula) "radius_C") = 6/4 = 3/2 = 3: 2