Ang vertex form ng isang parabola ay
Ang kaitaasan ng parabola ay
Para sa parabola na ito, ang focus
Ang direktor
Mayroon na tayong dalawang equation at makikita ang mga halaga ng
Ang paglutas ng sistemang ito ay nagbibigay
Pag-plug sa mga halaga ng
Ano ang vertex form ng equation ng parabola na may pokus sa (11,28) at isang directrix ng y = 21?
Ang equation ng parabola sa vertex form ay y = 1/14 (x-11) ^ 2 + 24.5 Ang Vertex ay equuidistant mula sa focus (11,28) at directrix (y = 21). Kaya vertex ay nasa 11, (21 + 7/2) = (11,24.5) Ang equation ng parabola sa vertex form ay y = a (x-11) ^ 2 + 24.5. Ang distansya ng vertex mula directrix ay d = 24.5-21 = 3.5 Alam natin, d = 1 / (4 | a |) o a = 1 / (4 * 3.5) = 1 / 14. Dahil ang Parabola ay bubukas, ay + ive. Kaya ang equation ng parabola sa vertex form ay y = 1/14 (x-11) ^ 2 + 24.5 graph {1/14 (x-11) ^ 2 + 24.5 [-160, 160, -80, 80] Ans]
Ano ang vertex form ng equation ng parabola na may pokus sa (1,20) at isang directrix ng y = 23?
Y = x ^ 2 / -6 + x / 3 + 64/3 Given - Focus (1,20) directrix y = 23 Ang vertex ng parabola ay nasa unang kuwadrante. Direktor nito ay nasa itaas ng kaitaasan. Kaya ang parabola ay bumubukas pababa. Ang pangkalahatang anyo ng equation ay - (xh) ^ 2 = - 4xxaxx (yk) Kung saan - h = 1 [X-coordinate ng vertex] k = 21.5 [Y-coordinate ng vertex] Then - (x-1 ) ^ 2 = -4xx1.5xx (y-21.5) x ^ 2-2x + 1 = -6y + 129 -6y + 129 = x ^ 2-2x + 1 -6y = x ^ 2-2x + 1-129 y = x ^ 2 / -6 + x / 3 + 128/6 y = x ^ 2 / -6 + x / 3 + 64/3
Ang dalawang rhombuses ay may panig na may haba ng 4. Kung ang isang rhombus ay may isang sulok na may isang anggulo ng pi / 12 at ang isa ay may isang sulok na may isang anggulo ng (5pi) / 12, ano ang pagkakaiba sa pagitan ng mga lugar ng mga rhombus?
Pagkakaiba sa Area = 11.31372 "" parisukat na mga yunit Upang kumpirmahin ang lugar ng isang rhombus Gamitin ang formula Area = s ^ 2 * sin angta "" kung saan s = gilid ng rhombus at theta = anggulo sa pagitan ng dalawang panig Compute the area of rhombus 1. Lugar = 4 * 4 * kasalanan ((5pi) / 12) = 16 * kasalanan 75 ^ @=15.45482 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ Compute the area of rhombus 2. Area = 4 * 4 * sin ((pi) / 12) = 16 * sin 15^@=4.14110 ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Compute the difference in Area = 15.45482-4.14110 = 11.31372 God bless .... I hope kapaki-pakinabang ang pali