Paano mo nahanap ang equation ng isang line na padapuan sa function y = (x-1) (x ^ 2-2x-1) sa x = 2?

Paano mo nahanap ang equation ng isang line na padapuan sa function y = (x-1) (x ^ 2-2x-1) sa x = 2?
Anonim

Sagot:

# y = x-3 # ay ang equation ng iyong padaplis na linya

Paliwanag:

Kailangan mong malaman iyon #color (pula) (y '= m) # (ang slope) at din ang equation ng isang linya ay #color (asul) (y = mx + b) #

# y = (x-1) (x ^ 2-2x-1) = x ^ 3-2x ^ 2-x-x ^ 2 + 2x + 1 #

# => y = x ^ 3-3x ^ 2 + x + 1 #

# y '= 3x ^ 2-6x + 1 #

# y '= m => m = 3x ^ 2-6x + 1 # at sa # x = 2 #, # m = 3 (2) ^ 2-6 (2) + 1 = 12-12 + 1 = 1 #

# y = x ^ 3-3x ^ 2 + x + 1 # at sa # x = 2 #, # y = (2) ^ 3-3 (2) ^ 2 + 2 + 1 = 8-12 + 3 = -1 #

Ngayon, mayroon kami # y = -1 #, # m = 1 # at # x = 2 #, ang kailangan nating hanapin upang isulat ang equation ng linya ay # b #

# y = mx + b => - 1 = 1 (2) + b => b = -3 #

Kaya, ang linya ay # y = x-3 #

Tandaan na maaari mo ring natagpuan ang equation na ito sa pamamagitan ng paggamit #color (berde) (y-y_0 = m (x-x_0)) # sa iyong punto #(2,-1)# dahil # x_0 = 2 # at # y_0 = -1 #

# y-y_0 = m (x-x_0) => y - (- 1) = 1 (x-2) #

# => y + 1 = x-2 #

# => y = x-3 #

Hope this helps:)