Sagot:
Isang ellipse
Paliwanag:
Maaaring katawanin ang Conce bilang
#p cdot M cdot p + << p, {a, b} >> + c = 0 #
kung saan #p = {x, y} # at
#M = ((m_ {11}, m_ {12}), (m_ {21}, m_ {22})) #.
Para sa conics #m_ {12} = m_ {21} # pagkatapos # M # Ang mga eigenvalues ay palaging tunay sapagkat ang matrix ay symetric.
Ang katangiang polinomyal ay
#p (lambda) = lambda ^ 2- (m_ {11} + m_ {22}) lambda + det (M) #
Depende sa kanilang mga pinagmulan, ang alimusod ay maaaring uriin bilang
1) Katumbas --- bilog
2) Parehong pag-sign at iba't ibang mga absolute value --- ellipse
3) Iba't ibang mga tanda --- hyperbola
4) Isang null root --- parabola
Sa kasalukuyan ay mayroon kami
#M = ((4,0), (0,8)) #
na may katangiang polinomyal
# lambda ^ 2-12lambda + 32 = 0 #
may mga ugat #{4,8}# kaya mayroon kaming isang tambilugan.
Ang pagiging isang tambilugan ay mayroong isang kanonikal na representasyon para dito
# ((x-x_0) / a) ^ 2 + ((y-y_0) / b) ^ 2 = 1 #
# x_0, y_0, a, b # maaaring matukoy ang mga sumusunod
# 4 x ^ 2 + 8 y ^ 2 - 8 x - 28- (b ^ 2 (x-x_0) ^ 2 + a ^ 2 (y-y_0) ^ 2-a ^ 2b ^ 2) = 0 forall x in RR #
pagbibigay
# {(-28 + a ^ 2 b ^ 2 - b ^ 2 x_0 ^ 2 - a ^ 2 y_0 ^ 2 = 0), (2 a ^ 2 y_0 = 0), (8 - a ^ 2 = 0) (-8 + 2 b ^ 2 x_0 = 0), (4 - b ^ 2 = 0):} #
paglutas namin
# {a ^ 2 = 8, b ^ 2 = 4, x_0 = 1, y_0 = 0} #
kaya nga
# {4 x ^ 2 + 8 y ^ 2 - 8 x - 24 = 4} equiv {(x-1) ^ 2/8 + y ^ 2/4 = 1} #