Paano mo pinasimple ang f (theta) = sin4theta-cos6theta sa trigonometriko function ng isang yunit theta?

Paano mo pinasimple ang f (theta) = sin4theta-cos6theta sa trigonometriko function ng isang yunit theta?
Anonim

Sagot:

Ang (mga)) ^ 6-15cos (theta) ^ 2sin (theta) ^ 4-4cos (theta) sin (theta) ^ 3 + 15cos (theta) ^ 4sin (theta) ^ 2 + 4cos (theta) ^ 3sin (theta) -cos (theta) ^ 6 #

Paliwanag:

Gagamitin namin ang sumusunod na dalawang pagkakakilanlan:

#sin (A + -B) = sinAcosB + -cosAsinB #

#cos (A + -B) = cosAcosB sinAsinB #

2sin (theta) cos (2theta) = 2 (2sin (theta) cos (theta)) (cos ^ 2 (theta) - sa ^ 2 (theta)) = 4sin (theta) cos ^ 3 (theta) -4sin ^ 3 (theta) cos (theta) #

#cos (6theta) = cos ^ 2 (3theta) -in ^ 2 (3theta) #

(2ta) sin (theta)) ^ 2 (sin (2theta) cos (theta)) ^ 2 #

# = (cos (theta) (cos ^ 2 (theta) - sa ^ 2 (theta)) - 2sin ^ 2 (theta) cos (theta)) ^ 2 (2cos ^ 2 (theta) sin (theta) (theta) (cos ^ 2 (theta) -in ^ 2 (theta)) ^ 2 #

# = (cos ^ 3 (theta) -in ^ 2 (theta) cos (theta) -2sin ^ 2 (theta) cos (theta)) ^ 2- (2cos ^ 2 (theta) sin (theta) + cos ^ (theta) sin (theta) -in ^ 3 (theta)) ^ 2 #

# = (cos ^ 3 (theta) -3sin ^ 2 (theta) cos (theta)) ^ 2 (3cos ^ 2 (theta) sin (theta) -in ^ 3 (theta)) ^ 2 #

# = cos ^ 6 (theta) -6sin ^ 2 (theta) cos ^ 4 (theta) + 9sin ^ 4 (theta) cos ^ 2 (theta) -9sin ^ 2 (theta) cos ^ 4 (theta) + 6sin ^ 4 (theta) cos ^ 2 (theta) -in ^ 6 (theta) #

(s) - 4sin (theta) cos ^ 3 (theta) -4sin ^ 3 (theta) cos (theta) - (cos ^ 6 (theta) -6sin ^ 2 (theta) cos ^ 4 (theta) + 9sin ^ 4 (theta) cos ^ 2 (theta) -9sin ^ 2 (theta) cos ^ 4 (theta) + 6sin ^ 4 (theta) cos ^ 2 (theta) #

(= Theta) -4sin ^ 3 (theta) cos ^ 2 (theta) + 9sin ^ 2 (theta) cos ^ 4 (theta) -6sin ^ 4 (theta) cos ^ 2 (theta) + sin ^ 6 (theta) #

# = sin (theta) ^ 6-15cos (theta) ^ 2sin (theta) ^ 4-4cos (theta) sin (theta) ^ 3 + 15cos (theta) ^ 4sin (theta) ^ 2 + 4cos (theta) ^ 3sin (theta) -cos (theta) ^ 6 #