Sagot:
Sa pangkalahatan, ang substitution na trig ay ginagamit para sa mga integral ng form
Paliwanag:
Nakikita ko ang parehong mga uri ng mga pamalit na kaakit-akit dahil sa pangangatuwiran sa likod ng mga ito. Isaalang-alang, una, trig substitution. Nagmumula ito mula sa Pythagorean Theorem at Pythagorean Identities, marahil ang dalawang pinakamahalagang konsepto sa trigonometrya. Ginagamit namin ito kapag mayroon kaming isang bagay tulad ng:
Maaari naming makita na ang mga ito ng dalawang tumingin awfully gusto
Ang larawan ay lubhang kapaki-pakinabang, sapagkat ito ay nagsasabi sa amin
Maaari mong gamitin ang trig sub. para sa isang mahusay na deal ng mga problema, ngunit maaari mong gamitin
Habang ang dalawang pamamaraan ay maaaring magkakaiba, pareho silang naglilingkod sa parehong layunin: upang mabawasan ang isang mahalagang bahagi sa isang mas simpleng anyo upang magamit namin ang mga pangunahing pamamaraan. Natitiyak kong hindi sapat ang paliwanag ko upang isama ang lahat ng mga tukoy na detalye tungkol sa mga pamalit na ito, kaya inaanyayahan ko ang iba na mag-ambag.
Paano mo isama ang int sqrt (-x ^ 2-6x + 16) / xdx gamit ang trigonometriko pagpapalit?
Tingnan ang sagot sa ibaba:
Paano mo isama ang int 1 / sqrt (-e ^ (2x) -20e ^ x-101) dx gamit ang trigonometriko pagpapalit?
-sqrt (101) / 101i * ln ((10 ((e ^ x + 10) / (sqrt (e ^ (2x) + 20e ^ x + 101) +1)) + 1-sqrt101) / (10 (( e ^ x + 10) / (sqrt (e ^ (2x) + 20e ^ x + 101) +1)) + 1 + sqrt101)) + C Ang solusyon ay kaunting haba !!! Mula sa ibinigay na int 1 / sqrt (-e ^ (2x) -20e ^ x-101) * dx int 1 / ((sqrt (-1) * sqrt (e ^ (2x) + 20e ^ x + 101) dx Tandaan na ang i = sqrt (-1) ang haka-haka na numero Itabi ang komplikadong numero nang ilang sandali at magpatuloy sa integral int 1 / (sqrt (e ^ (2x) + 20e ^ x + 101)) * dx sa pamamagitan ng pagkumpleto ang parisukat at paggawa ng ilang pagpapangkat: int 1 / (sqrt ((e ^ x) ^ 2 + 20e ^ x + 100-100
Paano mo isama ang int 1 / sqrt (x ^ 2-4x + 13) dx gamit ang trigonometriko pagpapalit?
Int / sqrt (x ^ 2-4x + 13) = ln | sqrt (1+ (x-2) ^ 2/9) + (x-2) / 3 | 4x + 13) dx = int 1 / sqrt (x ^ 2-4x + 9 + 4) dx int 1 / (sqrt ((x-2) ^ 2 + 3 ^ 2)) dx x-2 = 3tan theta " dx = 3sec ^ 2 theta d theta int 1 / sqrt (x ^ 2-4x + 13) dx = int (3sec ^ 2 theta d theta) / sqrt (9tan ^ 2 theta + 9) = int (3sec ^ 2 theta d theta) / (3sqrt (1 + tan ^ 2 theta)) "" 1 + tan ^ 2 theta = sec ^ 2 theta int 1 / sqrt (x ^ 2-4x + 13) dx = int (3sec ^ 2 theta d theta ) / (Korte (3sec theta)) int 1 / sqrt (x ^ 2-4x + 13) dx = int (kanselahin (3sec ^ 2 theta) (x ^ 2-4x + 13) dx = int sec theta d theta int 1 / sqrt (x ^ 2-4x +