Ano ang sinasabi ng equation (x-1) ^ 2 / 4- (y + 2) ^ 2/9 = 1 tungkol sa hyperbola nito?

Ano ang sinasabi ng equation (x-1) ^ 2 / 4- (y + 2) ^ 2/9 = 1 tungkol sa hyperbola nito?
Anonim

Sagot:

Pakitingnan ang paliwanag sa ibaba

Paliwanag:

Ang pangkalahatang equation ng isang hyperbola ay

# (x-h) ^ 2 / a ^ 2 (y-k) ^ 2 / b ^ 2 = 1 #

Dito, Ang equation ay

# (x-1) ^ 2/2 ^ 2 (y + 2) ^ 2/3 ^ 2 = 1 #

# a = 2 #

# b = 3 #

# c = sqrt (a ^ 2 + b ^ 2) = sqrt (4 + 9) = sqrt13 #

Ang sentro ay # C = (h, k) = (1, -2) #

Ang mga vertex ay

# A = (h + a, k) = (3, -2) #

at

#A '= (h-a, k) = (- 1, -2) #

Ang foci ay

# F = (h + c, k) = (1 + sqrt13, -2) #

at

#F '= (h-c, k) = (1-sqrt13, -2) #

Ang pagka-sira ay

# e = c / a = sqrt13 / 2 #

graph {((x-1) ^ 2 / 4- (y + 2) ^ 2 / 9-1) = 0 -14.24, 14.25, -7.12, 7.12}

Sagot:

Tingnan ang sagot sa ibaba

Paliwanag:

Ang ibinigay na equation ng hyperbola

# frac {(x-1) ^ 2} {4} - frac {(y + 2) ^ 2} {9} = 1 #

# frac {(x-1) ^ 2} {2 ^ 2} - frac {(y + 2) ^ 2} {3 ^ 2} = 1 #

Ang nasa itaas na equation ay nasa karaniwang anyo ng hyperbola:

# (x-x_1) ^ 2 / a ^ 2 (y-y_1) ^ 2 / b ^ 2 = 1 #

Na may

Pagkahati-hati: # e = sqrt {1 + b ^ 2 / a ^ 2} = sqrt {1 + 9/4} = sqrt13 / 2 #

Gitna: # (x_1, y_1) equiv (1, -2) #

Mga Vertical: # (x_1 pm a, y_1) equiv (1 pm2, -2) # &

# (x_1, y_1 pm b) equiv (1, -2 pm 3) #

Asymptotes: # y-y_1 = pm b / a (x-x_1) #

# y + 2 = pm3 / 2 (x-1) #