Sagot:
#165.#
Paliwanag:
#f (x) = ax ^ 2 + bx + c, x sa RR; a, b, c sa ZZ #
Ang graph ng # f # ay dumadaan sa mga pts. # (m, 0), at, (n, 2016 ^ 2) #.
#:. 0 = am ^ 2 + bm + c …. (1), &, 2016 ^ 2 = an ^ 2 + bn + c ……… (2) #.
# (2) - (1) rArr a (n ^ 2-m ^ 2) + b (n-m) = 2016 ^ 2 #.
#:. (n-m) {a (n + m) + b} = 2016 ^ 2. #
Dito, # m, n, a, b, c sa ZZ "na may" n> m #
#rArr (n-m), {a (n + m) + b} sa ZZ ^ + #
Nangangahulugan ito na # (n-m) # ay isang kadahilanan ng # 2016 ^ 2 = 2 ^ 10 * 3 ^ 4 * 7 ^ 2 … (bituin) #
Samakatuwid, Hindi posibleng halaga ng # (n-m), #
# "= no ng posibleng mga kadahilanan ng" 2016 ^ 2, #
# = (1 + 10) (1 + 4) (1 + 2) …………… sa pamamagitan ng, (bituin) #
#=165.#
Ginamit namin ang resultang ito: Kung ang kalakasan na factorisation ng #a sa NN # ay,
# a = p_1 ^ (alpha_1) * p_2 ^ (alpha_2) * p_3 ^ (alpha_3) * … * p_n ^ (alpha_n) #, pagkatapos # a # may
# (1 + alpha_1) (1 + alpha_2) (1 + alpha_3) … (1 + alpha_n) # mga kadahilanan.