Tanong # bfe81

Tanong # bfe81
Anonim

Sagot:

# (ln (x ^ 2 + 1)) / x ^ 2 = sum_ (n = 1) ^ oo (-1) ^ (n + 1) / nx ^ (2n-2) = 1-x ^ 2/2 + x ^ 4/3-x ^ 6/4 … #

Paliwanag:

Alam namin ang sumusunod na serye ng Maclaurin para sa #ln (x + 1) #:

#ln (x + 1) = sum_ (n = 1) ^ oo (-1) ^ (n + 1) / nx ^ n = x-x ^ 2/2 + x ^ 3 /

Makakahanap tayo ng serye para sa #ln (x ^ 2 + 1) # sa pamamagitan ng pagpapalit ng lahat # x #may kasama # x ^ 2 #:

#ln (x ^ 2 + 1) = sum_ (n = 1) ^ oo (-1) ^ (n +1) / n (x ^ 2) ^ n #

Ngayon ay maaari na lang nating hatiin # x ^ 2 # upang mahanap ang seryeng hinahanap namin:

# (ln (x ^ 2 + 1)) / x ^ 2 = 1 / x ^ 2sum_ (n = 1) ^ oo (-1) ^ (n +1) / nx ^ (2n) = #

# = sum_ (n = 1) ^ oo (-1) ^ (n + 1) / n * x ^ (2n) / x ^ 2 = sum_ (n = 1) ^ oo (-1) ^ (n + 1) / nx ^ (2n-2) = #

# = x ^ (2-2) -x ^ (2 * 2-2) / 2 + x ^ (3 * 2-2) / 3-x ^ (4 * 2-2) / 4 … =

# = 1-x ^ 2/2 + x ^ 4/3-x ^ 6/4 … #

na kung saan ay ang serye na aming hinahanap.