Paano mo naiiba ang arcsin (csc (4x))) gamit ang tuntunin ng kadena?

Paano mo naiiba ang arcsin (csc (4x))) gamit ang tuntunin ng kadena?
Anonim

Sagot:

# d / dx (sin ^ -1 csc (4x)) = 4 * seg 4x * sqrt (1-csc ^ 2 4x) #

Paliwanag:

Ginagamit namin ang formula

# d / dx (sin ^ -1 u) = (1 / sqrt (1-u ^ 2)) du #

# d / dx (sin ^ -1 csc (4x)) = (1 / sqrt (1- (csc 4x) ^ 2)) d / dx (csc 4x) #

# d / dx (sin ^ -1 csc (4x)) = (1 / sqrt (1-csc ^ 2 4x)) * (- csc 4x * cot 4x) * d / dx (4x)

# d / dx (sin ^ -1 csc (4x)) = ((- csc 4x * cot 4x) / sqrt (1-csc ^ 2 4x)) * (4) #

# d / dx (sin ^ -1 csc (4x)) = ((4 - csc 4x * cot 4x) / sqrt (1-csc ^ 2 4x)) * (sqrt (1-csc ^ sqrt (1-csc ^ 2 4x))) #

# d / dx (sin ^ -1 csc (4x)) = ((4 - csc 4x * cot 4x * sqrt (1-csc ^ 2 4x)) / (- cot ^ 2 4x)

# d / dx (sin ^ -1 csc (4x)) = 4 * seg 4x * sqrt (1-csc ^ 2 4x) #

Pagpalain ng Diyos …. Umaasa ako na ang paliwanag ay kapaki-pakinabang.