Paano mo mahanap ang kabaligtaran ng 1-ln (x-2) = f (x)?

Paano mo mahanap ang kabaligtaran ng 1-ln (x-2) = f (x)?
Anonim

Sagot:

Kabaligtaran x at y.

# f ^ -1 (x) = e ^ (1-x) + 2 #

Paliwanag:

Ang hindi bababa sa pormal na paraan, (ngunit mas madali sa aking opinyon) ay pinapalitan ang x at y, kung saan # y = f (x) #. Samakatuwid, ang pag-andar:

#f (x) = 1-ln (x-2) #

# y = 1-ln (x-2) #

May balanseng pag-andar ng:

# x = 1-ln (y-2) #

Ngayon ay malutas ang y:

#ln (y-2) = 1-x #

#ln (y-2) = lne ^ (1-x) #

Ang function ng logarithmic # ln # ay 1-1 para sa anumang #x> 0 #

# y-2 = e ^ (1-x) #

# y = e ^ (1-x) + 2 #

Na nagbibigay ng invers function:

# f ^ -1 (x) = e ^ (1-x) + 2 #