Ano ang discriminant ng x ^ 2 -11x + 28 = 0 at ano ang ibig sabihin nito?

Ano ang discriminant ng x ^ 2 -11x + 28 = 0 at ano ang ibig sabihin nito?
Anonim

Sagot:

Ang diskriminasyon ay 9. Ito ay nagsasabi sa iyo na mayroong dalawang tunay na ugat sa equation.

Paliwanag:

Kung mayroon kang isang parisukat equation ng form

# ax ^ 2 + bx + c = 0 #

Ang solusyon ay

#x = (-b ± sqrt (b ^ 2-4ac)) / (2a) #

Ang discriminant #Δ# ay # b ^ 2 -4ac #.

Ang diskriminasyon ay "nagtatangi" sa likas na katangian ng mga ugat.

May tatlong posibilidad.

  • Kung #Δ > 0#, may mga dalawang magkahiwalay tunay na ugat.
  • Kung #Δ = 0#, may mga dalawang magkatulad tunay na ugat.
  • Kung #Δ <0#, may mga hindi tunay na ugat, ngunit may dalawang kumplikadong ugat.

Ang iyong equation ay

# x ^ 2 -11x +28 = 0 #

# Δ = b ^ 2 - 4ac = 11 ^ 2 -4 × 1 × 28 = 121 - 112 = 9 #

Ito ay nagsasabi sa iyo na mayroong dalawang tunay na ugat.

Maaari naming makita ito kung malutas namin ang equation.

# x ^ 2 -11x +28 = 0 #

# (x-7) (x-4) = 0 #

# (x-7) = 0 o #(x-4) = 0 #

# x = 7 # o #x = 4 #

Mayroong dalawang tunay na ugat sa equation.