Paano mo mahanap ang limitasyon ng f (x) = (x ^ 2 - 1) / (x + 1) ^ 2 bilang x approach -1?

Paano mo mahanap ang limitasyon ng f (x) = (x ^ 2 - 1) / (x + 1) ^ 2 bilang x approach -1?
Anonim

Sagot:

#lim_ (x -> - 1) f (x) = - oo #

Paliwanag:

Dahil kapag nagpalit #-1# sa ibinigay na function mayroong walang katiyakan na halaga #0/0#

Dapat nating isipin ang ilang algebraic

#lim_ (x -> - 1) f (x) = lim_ (x -> - 1) (x ^ 2-1) / (x + 1) ^ 2 #

#lim_ (x -> - 1) f (x) = lim_ (x -> - 1) ((x-1) (x + 1)) / (x + 1) ^ 2 #

Pinasimple namin # x + 1 #

#lim_ (x -> - 1) f (x) = lim_ (x -> - 1) (x-1) / (x + 1) #

#lim_ (x -> - 1) f (x) = lim_ (x -> - 1) (- 1-1) / (- 1 + 1) #

#lim_ (x -> - 1) f (x) = lim_ (x -> - 1) -2 / 0 #

#lim_ (x -> - 1) f (x) = - oo #