Sagot:
Paliwanag:
Ito ay nagtatanong ng "Ilang beses maaari 3" magkasya sa "57?
O kaya
"Ilang beses maaaring alisin ang 3 mula sa 57?"
Sa paghahati:
Sa pamamagitan ng pagtantya:
57 ay 3 mas mababa sa 60, kaya 20-1 = 19 beses.
Ang bilang ng isang nakaraang taon ay hinati ng 2 at ang resulta ay nakabaligtad at hinati ng 3, pagkatapos ay iniwan sa kanang bahagi at hinati sa 2. Pagkatapos ang mga digit sa resulta ay binabaligtad upang gawing 13. Ano ang nakaraang taon?
Kulay (pula) ("xxx"), rarr ["resulta" 0]), (["resulta" 0] div 2, "[resulta] 1]), ([" resulta "1]" nakabaligtad ",, rarr [" resulta "2]), ([" resulta "2]" hinati sa "3, "3"), (("kaliwa sa kanang bahagi"), ("walang pagbabago"), (["resulta" 3] div 2, ("XX") ["resulta" 4] = 31 kulay (puti) ("XX") [ "resulta" 3] = 62 kulay (puti) ("XX") ["resulta" 2] = 186 kulay (puti) ("XX") ["resulta" 1] = 981color ipinapalagay na "naka
Ang isang line of best fit ay hinuhulaan na kapag x ay katumbas ng 35, y ay katumbas ng 34.785, ngunit ang aktwal ay katumbas ng 37. Ano ang natitira sa kasong ito?
2.215 Ang natitira ay tinukoy bilang e = y - hat y = 37 - 34.785 = 2.215
Kapag ang isang polinomyal ay hinati sa (x + 2), ang natitira ay -19. Kapag ang parehong polinomyal ay hinati sa (x-1), ang natitira ay 2, paano mo matukoy ang natitira kapag ang polinomyal ay hinati ng (x + 2) (x-1)?
Alam namin na ang f (1) = 2 at f (-2) = - 19 mula sa Remainder Theorem Ngayon mahanap ang natitira sa polynomial f (x) kapag hinati ng (x-1) (x + 2) ang form na Ax + B, dahil ito ay ang natitira pagkatapos ng dibisyon sa pamamagitan ng isang parisukat. Maaari naming multiply ang mga oras ng divisor ang quotient Q ... f (x) = Q (x-1) (x + 2) + Ax + B Susunod, ipasok ang 1 at -2 para sa x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) B = -2A + B = -19 Paglutas ng dalawang equation, nakukuha natin ang A = 7 at B = -5 Remainder = Ax + B = 7x-5