Kapag ang isang polynomial na P (x) ay nahahati ng binomial 2x ^ 2-3 ang kusyente ay 2x-1 at ang natitira ay 3x + 1. Paano mo mahanap ang pagpapahayag ng P (x)?

Kapag ang isang polynomial na P (x) ay nahahati ng binomial 2x ^ 2-3 ang kusyente ay 2x-1 at ang natitira ay 3x + 1. Paano mo mahanap ang pagpapahayag ng P (x)?
Anonim

Kapag ang isang polinomyal ay nahahati sa isa pang polinomyal, ang kusyente nito ay maaaring nakasulat bilang #f (x) + (r (x)) / (h (x)) #, kung saan #f (x) # ay ang kusyente, #r (x) # ang natitira at #h (x) # ay ang panghati.

Samakatuwid:

#P (x) = 2x - 1 + (3x + 1) / (2x ^ 2 - 3) #

Ilagay sa isang karaniwang denominador:

#P (x) = (((2x- 1) (2x ^ 2 - 3)) + 3x + 1) / (2x ^ 2 - 3) #

#P (x) = (4x ^ 3 - 2x ^ 2 - 6x + 3 + 3x + 1) / (2x ^ 2 3) #

#P (x) = (4x ^ 3 - 2x ^ 2 - 3x + 4) / (2x ^ 2 - 3) #

Samakatuwid, #P (x) = 4x ^ 3 - 2x ^ 2 - 3x + 4 #.

Sana ay makakatulong ito!